-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_Analysis.R
641 lines (567 loc) · 29.9 KB
/
04_Analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
# Data science
library(tidyverse)
library(reshape2)
library(stringr)
library(lubridate)
library(assertthat);library(assertr)
# Visualization
library(ggplot2)
library(ggthemes)
library(scales)
library(patchwork)
library(colorspace)
library(rsample) # tidy resampling
# Modelling
library(lme4)
library(mgcv)
library(broom)
source('00_HelperFunction.R')
# Hacks to make BRMS faster
options(mc.cores = parallel::detectCores()-1)
options(dplyr.summarise.inform = FALSE)
# ------------------------------------ #
# Figure path
figure_path <- 'figures'
# Intermediate results
output_path <- 'resSaves'
dir.create(output_path,showWarnings = FALSE)
dir.create(figure_path,showWarnings = FALSE)
# --- #
# Path to PREDICTS data
sites <- readRDS('resSaves/sites_diversity.rds')
# Calculate biodiversity metrics
sites <- sites %>%
dplyr::mutate(logabund = log10(Total_abundance+1),
asinPIE = asin(sqrt(PIE)))
# Pairwise sorensen. Need to further subset to target studies
sites.dis <- readRDS('resSaves/sites_pairwise_sorensen.rds')
sites.dis[names(sites.dis) %notin% unique(sites$SS)] <- NULL
# Furthermore check and remove those that are all 1 or NA.
x <- which( sapply(sites.dis, function(x){ length( unique( as.vector(x) ) ) <= 2 }) )
sites.dis[names(x)] <- NULL
# Load remote-sensing data
rs <- readRDS('resSaves/MCD43A4_BRDF_center_computed_yearbefore.rds') %>%
# Remove sites with too much missing data
filter(propNA <= 0.5) %>%
# Remove those with no positive EVI, which likely fall in water, or where the AUC is smaller than 0
filter(EVI2_mean >0, EVI2_AUC > 0)
# Missing data in non-gap filled estimates
mean(rs$propNA);sd(rs$propNA)
# Variance explained of PCA axes 1 & 2
mean(rs$PCA_BRDF_variance12,na.rm = T); sd(rs$PCA_BRDF_variance12,na.rm = T)
# Correlation between metrics
cor.test(rs$EVI2_mean,rs$PCA_BRDF_meancentroid,method = 'pear')
# Load pairwise distance
pdis <- readRDS('resSaves/pairwiseSiteDistance.rds') %>%
dplyr::mutate(distance = log10(distance+1))
# Distance to centroid
cdis <- readRDS(paste0('resSaves/centroidDistance.rds')) %>%
dplyr::mutate(distance = distance + 0.5)
# ------------------------------------ #
#### Figure 1 - Predictability with and without partial pooling ####
# Idea:
# Take site based measures and assess predictability
# within (a) each study and (b) within each study but without partial pooling
results <- data.frame()
# Now loop through each study
for(study in unique(as.character(sites$SS)) ){
myLog(study)
# Get subset
sites.sub <- subset(sites, SS == study)
sites.sub <- dplyr::left_join(sites.sub, cdis, by = c('SS','SSBS'))
if(study %in% names(sites.dis)) {sites.dis.sub <- sites.dis[[study]]} else {sites.dis.sub <- NULL}
if(nrow(sites.sub)<4) next() # No point making any inferences on this little data
# Combine with rs data
rs.sub <- rs %>% dplyr::filter(SSBS %in% sites.sub$SSBS)
if(nrow(rs.sub)==0) {next()}
sites.sub <- sites.sub %>% left_join(., rs, by = 'SSBS')
if(sum(!is.na(sites.sub$EVI2_mean)) < 4) next()
if(sum(!is.na(sites.sub$PCA_BRDF_meancentroid)) < 4) next()
# Formulate simple GLMs for each
fit.full.sr1_lin <- gam(Species_richness ~ EVI2_mean, family = poisson, data = sites.sub)
fit.full.sr2_lin <- gam(Species_richness ~ PCA_BRDF_meancentroid, family = poisson, data = sites.sub)
if(nrow(sites.sub)>10){
fit.full.sr1_spl <- try({gam(Species_richness ~ s(EVI2_mean), family = poisson, data = sites.sub)},silent = TRUE)
if(!inherits(fit.full.sr1_spl, "try-error")){
fit.full.sr2_spl <- gam(Species_richness ~ s(PCA_BRDF_meancentroid), family = poisson, data = sites.sub)
} else { fit.full.sr1_spl <- NULL; fit.full.sr2_spl <- NULL }
} else {
fit.full.sr1_spl <- NULL; fit.full.sr2_spl <- NULL
}
# fit.full.sr1 <- glm(Species_richness ~ EVI2_mean, family = poisson, data = sites.sub)
# fit.full.sr2 <- glm(Species_richness ~ PCA_BRDF_meancentroid, family = poisson, data = sites.sub)
if(!all(is.na(sites.sub$logabund))){
# fit.full.la1 <- glm(logabund ~ EVI2_mean, family = gaussian, data = sites.sub)
# fit.full.la2 <- glm(logabund ~ PCA_BRDF_meancentroid, family = gaussian, data = sites.sub)
fit.full.la1_lin <- gam(logabund ~ EVI2_mean, family = gaussian, data = sites.sub)
fit.full.la2_lin <- gam(logabund ~ PCA_BRDF_meancentroid, family = gaussian, data = sites.sub)
if(nrow(sites.sub)>10){
fit.full.la2_spl <- try({gam(logabund ~ s(EVI2_mean), family = gaussian, data = sites.sub)})
if(!inherits(fit.full.la2_spl, "try-error")){
fit.full.la2_spl <- gam(logabund ~ s(PCA_BRDF_meancentroid), family = gaussian, data = sites.sub)
} else { fit.full.la2_spl <- fit.full.la2_spl <- NULL }
} else {
fit.full.la2_spl <- fit.full.la2_spl <- NULL
}
} else {fit.full.la1_lin <- fit.full.la1_lin <- fit.full.la2_spl <- fit.full.la2_spl <- NULL}
if(sum(!is.na(sites.sub$asinPIE))>4 ){
# Occasionally PIE can't be calculated
fit.full.pie1_lin <- gam(asinPIE ~ EVI2_mean, family = gaussian, data = sites.sub)
fit.full.pie2_lin <- gam(asinPIE ~ PCA_BRDF_meancentroid, family = gaussian, data = sites.sub)
if(nrow(sites.sub)>10){
fit.full.pie1_spl <- try({gam(asinPIE ~ s(EVI2_mean), family = gaussian, data = sites.sub)})
if(!inherits(fit.full.pie1_spl, "try-error")){
fit.full.pie2_spl <- gam(asinPIE ~ s(PCA_BRDF_meancentroid), family = gaussian, data = sites.sub)
} else { fit.full.pie1_spl <- fit.full.pie2_spl <- NULL }
} else {
fit.full.pie1_spl <- fit.full.pie2_spl <- NULL
}
if(is.na(coef(fit.full.pie1_lin)[2])){ fit.full.pie1_lin <- fit.full.pie2_lin <- NULL }
} else {
fit.full.pie1_lin <- fit.full.pie2_lin <- fit.full.pie1_spl <- fit.full.pie2_spl <- NULL
}
if(!is.null(sites.dis.sub)){
require(reshape2)
# For dissimilarity, first format the data
sites.dis.sub[upper.tri(sites.dis.sub)] <- NA # Need only one half
df.dis <- reshape2::melt(sites.dis.sub) %>% tidyr::drop_na() %>% dplyr::rename(sr = value)
# Transform y estimates so that those are between 0 and 1
# https://stats.stackexchange.com/questions/48028/beta-regression-of-proportion-data-including-1-and-0
#df.full$sr.n <- (df.full$sr * (nrow(df.full) - 1) + 0.5) / nrow(df.full)
# Logit transform
df.dis$sr.n <- car::logit(df.dis$sr,adjust = 0.01)
#df.dis$sr.n <- asin(sqrt(df.dis$sr))
# Calculate for each pairing the respective distance between centroids
# Make data.frame and loop through each pairing
# And for mean EVI 2
rs.dis1 <- as.matrix( dist(rs.sub$EVI2_mean,method = 'manhattan',diag=F,upper=F) )
diag(rs.dis1) <- NA; rs.dis1[upper.tri(rs.dis1)] <- NA
rownames(rs.dis1) <- as.character(rs.sub$SSBS); colnames(rs.dis1) <- as.character(rs.sub$SSBS)
rs.dis1 <- reshape2::melt(rs.dis1) %>% tidyr::drop_na() %>% dplyr::rename(rsdis = value)
rs.dis2 <- as.matrix( dist(rs.sub$PCA_BRDF_centroid,method = 'manhattan',diag=F,upper=F) )
diag(rs.dis2) <- NA; rs.dis2[upper.tri(rs.dis2)] <- NA
rownames(rs.dis2) <- as.character(rs.sub$SSBS); colnames(rs.dis2) <- as.character(rs.sub$SSBS)
rs.dis2 <- reshape2::melt(rs.dis2) %>% tidyr::drop_na() %>% dplyr::rename(rsdis = value)
if(nrow(rs.dis1)==0 | nrow(rs.dis2) == 0){
fit.full.dis1_1 <- fit.full.dis2_1 <- fit.full.dis2_2 <- fit.full.dis1_2 <- NULL
} else {
# Join
df.full1 <- full_join(df.dis, rs.dis1, by = c('Var1','Var2')) %>% tidyr::drop_na() #EVI
df.full2 <- full_join(df.dis, rs.dis2, by = c('Var1','Var2')) %>% tidyr::drop_na() # BRDF
# Join in distance
df.full1 <- dplyr::left_join(df.full1, pdis %>% dplyr::filter(SS == study) %>%
dplyr::mutate(distance = normalize(distance)), by = c('Var1','Var2'))
df.full2 <- dplyr::left_join(df.full2, pdis %>% dplyr::filter(SS == study) %>%
dplyr::mutate(distance = normalize(distance)), by = c('Var1','Var2'))
assert_that(nrow(df.full1)>0,
all( between(df.full1$sr,0,1) ))
# Fit
fit.full.dis1_lin <- gam(sr.n ~ distance + rsdis,data = df.full1,family = gaussian())
fit.full.dis2_lin <- gam(sr.n ~ distance + rsdis,data = df.full2,family = gaussian())
if(nrow(df.full1)>10){
fit.full.dis1_spl <- try({gam(sr.n ~ distance + s(rsdis),data = df.full1,family = gaussian())})
if(!inherits(fit.full.dis1_spl, "try-error")){
fit.full.dis2_spl <- gam(sr.n ~ distance + s(rsdis),data = df.full2,family = gaussian())
} else { fit.full.dis1_spl <- fit.full.dis2_spl <- NULL }
} else {
fit.full.dis1_spl <- fit.full.dis2_spl <- NULL
}
}
}
# Get all estimates for any given model
assessPredictability <- function(model){
if(is.null(model)) {
return(data.frame())
}
# Check whether one or models are NULL, if so ignore
if(all(sapply(model, is.null))) return(data.frame())
if(any(sapply(model, is.null))){
model <- model[which(!sapply(model, is.null))]
}
# Simple cross validation script for gam
cvfit <- function(mod,n=10){
o <- data.frame()
for(i in 1:n){
# Do k-fold Cv
x <- mod$model[,all.vars(mod$formula)] %>% tidyr::drop_na()
# Select at random, but weighted by distance
try( train <- x[sample(1:nrow(x),size = round(nrow(x)*0.66),prob = mod$data$distance[as.numeric(rownames(x))] ),],silent = T )
if(!exists('train')) { train <- x[sample(1:nrow(x),size = round(nrow(x)*0.66) ),] }
test <- x[which(rownames(x) %notin% rownames(train)),]
assert_that(nrow(test)+nrow(train)==nrow(x))
if(nrow(train)<3) {next()}
# Retrain model(s)
new <- try({ gam(mod$formula, data = train, family = mod$family)},silent = TRUE)
if(inherits(new, "try-error")) next()
# Nonlinear?
is_smooth <- ifelse(length(grep("s\\(", names(coef(new))))>0, TRUE, FALSE)
o <- bind_rows(o,
data.frame(i = i,type = 'mape',is_smooth = is_smooth,
value = mape(observed = purrr::discard(test[, all.vars(mod$formula)[1]],is.na),
predicted = purrr::discard(predict(new, newdata = test,type = 'response'),is.na) )
),
data.frame(i = i,type = 'smape',is_smooth = is_smooth,
value = mape(observed = purrr::discard(test[, all.vars(mod$formula)[1]],is.na),
predicted = purrr::discard(predict(new, newdata = test,type = 'response'),is.na),type = 'sym') )
)
rm(train,test)
}
if(nrow(o)>0){
# Average
o %>% group_by(type,is_smooth) %>% summarise(avg = mean(value), sd = sd(value)) %>% ungroup()
} else { data.frame()}
}
cv <- data.frame()
for(i in 1:length(model)){
cv <- rbind(cv, cvfit(model[[i]]) )
}
if(nrow(cv)==0) return(data.frame())
# Get best model out of the two supplied ones
check <- cv$is_smooth[which(cv$type=="smape")][which.min(cv$avg[which(cv$type=="smape")])]
if(check) bestmodel <- model[[2]] else bestmodel <- model[[1]]
cv <- subset(cv, is_smooth == check)
# Get model coefficients without intercept
if(check){
cc <- broom::tidy(bestmodel)[-1,]
} else {
cc <- broom::tidy(bestmodel,parametric = TRUE)[-1,]
}
cc$is_smooth <- check
cc$full_r2 <- performance::r2_nagelkerke(bestmodel)
td <- data.frame(observed = bestmodel$model[, all.vars(bestmodel$formula)[1]],
predicted = predict(bestmodel,newdata = bestmodel$model,type = 'response')) %>% tidyr::drop_na()
cc$full_mape <- mape(td$observed,td$predicted)
cc$full_smape <- mape(td$observed,td$predicted,type = 'symetric')
# --- #
# Add cross-validated data to results output
cc$cv_mape <- cv$avg[cv$type=='mape']
cc$cv_smape <- cv$avg[cv$type=='smape']
try({rm(cv,td, bestmodel)},silent = T)
return(cc)
}
results <- dplyr::bind_rows(
results,
bind_rows(
assessPredictability(list(fit.full.sr1_lin,fit.full.sr1_spl)) %>% dplyr::mutate(SS = study,metric = 'SR'),
assessPredictability(list(fit.full.sr2_lin,fit.full.sr2_spl)) %>% dplyr::mutate(SS = study,metric = 'SR'),
assessPredictability(list(fit.full.la1_lin,fit.full.la2_spl)) %>% dplyr::mutate(SS = study,metric = 'LA'),
assessPredictability(list(fit.full.la2_lin,fit.full.la2_spl)) %>% dplyr::mutate(SS = study,metric = 'LA'),
assessPredictability(list(fit.full.pie1_lin,fit.full.pie1_spl)) %>% dplyr::mutate(SS = study,metric = 'PIE'),
assessPredictability(list(fit.full.pie2_lin,fit.full.pie2_spl)) %>% dplyr::mutate(SS = study,metric = 'PIE'),
assessPredictability(list(fit.full.dis1_lin,fit.full.dis1_spl)) %>% dplyr::mutate(SS = study,metric = 'SOR') %>% mutate(term = 'EVIdis') ,
assessPredictability(list(fit.full.dis2_lin,fit.full.dis2_spl)) %>% dplyr::mutate(SS = study,metric = 'SOR') %>% mutate(term = 'PCAcent')
)
)
# Clean up
rm(rs.sub,sites.dis.sub,sites.sub)
}
saveRDS(results,paste0(output_path, '/results_predicatability_nopooling.rds'))
# --- #
# Now build hierachical models but with pooling
# Build 10 sets of cross-validated studies
# Predict the overall hold out data
# Calculate sMAPE as before
results <- data.frame()
# Combine with rs data
df <- sites %>% left_join(., rs, by = 'SSBS') %>%
dplyr::left_join(.,cdis, by = c('SS','SSBS'))
rownames(df) <- df$SSBS
#### Predictability Model section here ####
# Formulate GLMERs for each
fit.full.sr1 <- glmer(Species_richness ~ EVI2_mean + (1|SS), family = poisson, data = df)
fit.full.sr2 <- glmer(Species_richness ~ PCA_BRDF_meancentroid + (1|SS), family = poisson, data = df)
fit.full.la1 <- glmer(logabund ~ EVI2_mean + (1|SS), family = gaussian, data = df)
fit.full.la2 <- glmer(logabund ~ PCA_BRDF_meancentroid + (1|SS), family = gaussian, data = df)
fit.full.pie1 <- glmer(asinPIE ~ EVI2_mean + (1|SS), family = gaussian, data = df)
fit.full.pie2 <- glmer(asinPIE ~ PCA_BRDF_meancentroid + (1|SS), family = gaussian, data = df)
# For Sor turnover
df.sr <- bind_rows(
lapply(names(sites.dis), function(x) {
d <- sites.dis[[x]]
d[upper.tri(d)] <- NA # Need only one half
reshape2::melt(d) %>% tidyr::drop_na() %>%
dplyr::rename(sr = value) %>%
dplyr::mutate(SS = x)
})
)
df.sr$sr.n <- car::logit(df.sr$sr,adjust = 0.01) # Logit transform with small constant
#df.sr$sr.n <- asin(sqrt(df.sr$sr))
# Same for the remote sensing dissimilarity metrics
df.rs <- data.frame()
for(study in unique(sites$SS)){
if(study %in% names(sites.dis)) {sites.dis.sub <- sites.dis[[study]]} else {next()}
rs.sub <- rs %>% dplyr::filter(SSBS %in% union(rownames(sites.dis.sub),colnames(sites.dis.sub)) )
if(nrow(rs.sub)==0) next()
# Calculate for each pairing the respective distance between centroids
# Make data.frame and loop through each pairing
rs.dis1 <- as.matrix( dist(rs.sub$PCA_BRDF_centroid,method = 'manhattan',diag=F,upper=F) )
diag(rs.dis1) <- NA; rs.dis1[upper.tri(rs.dis1)] <- NA
rownames(rs.dis1) <- as.character(rs.sub$SSBS); colnames(rs.dis1) <- as.character(rs.sub$SSBS)
rs.dis1 <- reshape2::melt(rs.dis1) %>% tidyr::drop_na() %>% dplyr::rename(rsdis = value) %>%
mutate(term = 'PCAcent')
# And for mean EVI 2
rs.dis2 <- as.matrix( dist(rs.sub$EVI2_mean,method = 'manhattan',diag=F,upper=F) )
diag(rs.dis2) <- NA; rs.dis2[upper.tri(rs.dis2)] <- NA
rownames(rs.dis2) <- as.character(rs.sub$SSBS); colnames(rs.dis2) <- as.character(rs.sub$SSBS)
rs.dis2 <- reshape2::melt(rs.dis2) %>% tidyr::drop_na() %>% dplyr::rename(rsdis = value) %>%
mutate(term = 'EVIdis')
df.rs <- bind_rows(df.rs, rs.dis1,rs.dis2)
}
# Join
df.full1 <- full_join(df.sr, df.rs %>% dplyr::filter(term == 'EVIdis'), by = c('Var1','Var2')) %>% tidyr::drop_na()
df.full2 <- full_join(df.sr, df.rs %>% dplyr::filter(term == 'PCAcent'), by = c('Var1','Var2')) %>% tidyr::drop_na()
# Join in distance
df.full1 <- dplyr::left_join(df.full1, pdis, by = c('SS','Var1','Var2'))
df.full2 <- dplyr::left_join(df.full2, pdis, by = c('SS','Var1','Var2'))
assert_that(nrow(df.full1)>0,
all( between(df.full1$sr,0,1) ))
# Fit
fit.full.dis1 <- glmer(sr.n ~ rsdis + distance + (1|SS),data = df.full1,family = gaussian())
fit.full.dis2 <- glmer(sr.n ~ rsdis + distance + (1|SS),data = df.full2,family = gaussian())
# Function call to assess within study predictability with partial pooling
assessPredictabilityGLMER <- function(model){
if(is.null(model)) {
return(data.frame())
}
# Simple cross validation script for glm
cvfit <- function(model,n=10){
o <- data.frame()
for(i in 1:n){
# Do k-fold Cv
x <- model@frame[,all.vars(model@call$formula)] %>% tidyr::drop_na() %>%
tibble::rownames_to_column()
# Join in distance if not already in there
if(!has_name(x,'distance')){x <- left_join(x, df %>% dplyr::select(SSBS,distance), by = c('rowname' = 'SSBS')) %>% tidyr::drop_na()}
# Select at random within group
train <- x %>% group_by(SS) %>% sample_frac(.66,weight = (distance+0.5)) %>% ungroup()
test <- x %>% dplyr::filter(rowname %notin% train$rowname)
# Retrain model for training dataset
if('family' %in% names(model@call)){
fam <- unlist( ifelse(model@call$family == 'poisson',poisson(),gaussian()) )
} else { fam <- gaussian()}
new <- glmer(model@call$formula, data = train, family = fam)
pb <- progress::progress_bar$new(total = length(unique(test$SS)))
for(study in unique(test$SS)){
sub <- test %>% dplyr::filter(SS == study)
o <- bind_rows(
o,
data.frame(SS = study, i = i,type = 'mape',value = mape(observed = sub[,all.vars(model@call$formula)[1]],
predicted = lme4:::predict.merMod(new,newdata = sub,type = 'response') )
),
data.frame(SS = study, i = i,type = 'smape',value = mape(observed = sub[,all.vars(model@call$formula)[1]],
predicted = lme4:::predict.merMod(new,newdata = sub,type = 'response'),type = 'sym')
)
)
pb$tick()
} # study-wide MAPE prediction
pb$terminate()
} # N for loop
if(nrow(o)>0){
# Average
o %>% group_by(SS,type) %>% summarise(avg = mean(value), sd = sd(value)) %>% ungroup()
} else { data.frame(type = NA, avg = NA, sd = NA)}
}
cv <- cvfit(model) %>%
dplyr::select(SS:avg) %>% tidyr::pivot_wider(names_from = 'type',values_from = 'avg')
cc <- coef(model)$SS %>% tibble::rownames_to_column(var = 'SS')
if(length(names(cc)) == 3){
names(cc) <- c('SS','intercept','value')
} else { names(cc) <- c('SS','intercept','value','distance'); cc <- cc %>% dplyr::select(-distance)}
cc$term <- all.vars(model@call$formula)[2]
cc <- dplyr::inner_join(cv,cc, by = 'SS')
# cc <- data.frame(t(summary(model)$coefficients[2,])) %>% # Get model coefficients without intercept
# dplyr::mutate(term = all.vars(model@call$formula)[2] )
# cc$full_r2c <- performance::r2_nakagawa(model)$R2_conditional
# cc$full_r2m <- performance::r2_nakagawa(model)$R2_marginal
# td <- data.frame(observed = model@frame[, all.vars(model@call$formula)[1]],
# predicted = predict(model,newdata = model@frame,type = 'response')) %>% tidyr::drop_na()
#
# cc$full_mape <- mape(td$observed,td$predicted )
# cc$full_smape <- mape(td$observed,td$predicted,type = 'symetric')
# --- #
return(cc)
}
results <- dplyr::bind_rows(
assessPredictabilityGLMER(fit.full.sr1) %>% dplyr::mutate(metric = 'SR') %>% mutate(term = 'EVIdis'),
assessPredictabilityGLMER(fit.full.sr2) %>% dplyr::mutate(metric = 'SR') %>% mutate(term = 'PCAcent'),
assessPredictabilityGLMER(fit.full.la1) %>% dplyr::mutate(metric = 'LA') %>% mutate(term = 'EVIdis'),
assessPredictabilityGLMER(fit.full.la2) %>% dplyr::mutate(metric = 'LA') %>% mutate(term = 'PCAcent'),
assessPredictabilityGLMER(fit.full.pie1) %>% dplyr::mutate(metric = 'PIE') %>% mutate(term = 'EVIdis'),
assessPredictabilityGLMER(fit.full.pie2) %>% dplyr::mutate(metric = 'PIE') %>% mutate(term = 'PCAcent'),
assessPredictabilityGLMER(fit.full.dis1) %>% dplyr::mutate(metric = 'SOR') %>% mutate(term = 'EVIdis'),
assessPredictabilityGLMER(fit.full.dis2) %>% dplyr::mutate(metric = 'SOR') %>% mutate(term = 'PCAcent')
)
# Save
saveRDS(results,paste0(output_path, '/results_predicatability_pooling.rds'))
# ------------------------- #
#### Transferability computation within groups ####
# Plan:
# Remove single studies within the same grouping
# Fit and predict the model on the missing estimates
# Remove any that have NA in method or unit!
sites.transf <- sites %>% tidyr::drop_na(Sampling_grouping, Grouping_unit)
n_distinct(sites.transf$TransferGrouping)
results <- data.frame()
# Now pooling
for(gg in unique(sites.transf$TransferGrouping)){
# Get subset
sites.sub <- subset(sites.transf,TransferGrouping == gg)
sites.sub <- dplyr::left_join(sites.sub, cdis, by = c('SS','SSBS'))
# Get studies
sites.dis.sub <- sites.dis[ which(names(sites.dis) %in% unique(sites.sub$SS)) ]
myLog('Processing ', n_distinct(sites.sub$SS), ' studies in this grouping')
# Combine with rs data
rs.sub <- rs %>% dplyr::filter(SSBS %in% sites.sub$SSBS) %>% dplyr::left_join(., sites.transf %>% dplyr::select(SS,SSBS), by = 'SSBS')
if(nrow(rs.sub)==0 | n_distinct(sites.sub$SS)<=1) {next()}
sites.sub <- sites.sub %>% left_join(., rs.sub, by = c('SS','SSBS'))
assertthat::assert_that(
all(rs.sub$SS %in% sites.sub$SS),
all( names(sites.dis.sub) %in% unique(sites.sub$SS) )
)
# Build subsets
out <- data.frame()
ss <- rep(1,length(unique(sites.sub$SS)));names(ss) <- unique(sites.sub$SS)
for(k in 1:10){
# --- #
ss.train <- sample(names(ss),size = length(ss)*.66,prob = ss)
ss.test <- names(ss)[names(ss) %notin% ss.train]
if(length(ss.test)==0 || length(ss.train) == 0 ) next()
# Change weighting for next iteration
ss[ss.train] <- ss[ss.train] -0.1;ss[ss.test] <- ss[ss.test] + 0.1
# Now fit for each response
df.train <- subset(sites.sub,SS %in% ss.train)
df.test <- subset(sites.sub, SS %in% ss.test)
if(all(is.na(df.train$EVI2_mean)) || length(which(!is.na(df.train$EVI2_mean))) <= 2) next()
fit.full.sr1 <- glm(Species_richness ~ EVI2_mean, family = poisson, data = df.train)
fit.full.sr2 <- glm(Species_richness ~ PCA_BRDF_meancentroid, family = poisson, data = df.train)
sub <- df.train %>% tidyr::drop_na(logabund,EVI2_mean)
if(!all(is.na(df.train$logabund)) & nrow(sub) >2){
fit.full.la1 <- glm(logabund ~ EVI2_mean, family = gaussian, data = sub)
fit.full.la2 <- glm(logabund ~ PCA_BRDF_meancentroid, family = gaussian, data = sub)
rm(sub)
} else {fit.full.la1 <- NULL; fit.full.la2 <- NULL}
sub <- df.train %>% tidyr::drop_na(asinPIE,EVI2_mean)
if(!all(is.na(df.train$asinPIE)) & nrow(sub)>2){
# Occasionally PIE can't be calculated
fit.full.pie1 <- glm(asinPIE ~ EVI2_mean, family = gaussian, data = df.train)
fit.full.pie2 <- glm(asinPIE ~ PCA_BRDF_meancentroid, family = gaussian, data = df.train)
if(is.na(coef(fit.full.pie1)[2])){ fit.full.pie1 <- NULL; fit.full.pie2 <- NULL }
} else {
fit.full.pie1 <- NULL; fit.full.pie2 <- NULL
}
if(!is.null(sites.dis.sub)){
require(reshape2)
# For dissimilarity, first format the data
cp <- sites.dis.sub
# TODO: Loop through and insert NA
for(n in names(cp)){
cp[[n]][upper.tri(cp[[n]])] <- NA
}
df.dis <- reshape2::melt(cp) %>% tidyr::drop_na() %>% dplyr::rename(sr = value,SS = L1)
# Transform y estimates so that those are between 0 and 1
# https://stats.stackexchange.com/questions/48028/beta-regression-of-proportion-data-including-1-and-0
#df.full$sr.n <- (df.full$sr * (nrow(df.full) - 1) + 0.5) / nrow(df.full)
# Logit transform
df.dis$sr.n <- car::logit(df.dis$sr,adjust = 0.01,percents = FALSE)
#df.dis$sr.n <- asin(sqrt(df.dis$sr))
# Make data.frame and loop through each pairing
# And for mean EVI 2
rs.dis1 <- data.frame()
for(n in unique(rs.sub$SS)){
x <- as.matrix( dist(rs.sub$EVI2_mean[which(rs.sub$SS==n)],method = 'manhattan',diag=F,upper=F) )
diag(x) <- NA; x[upper.tri(x)] <- NA
rownames(x) <- as.character(rs.sub$SSBS[rs.sub$SS == n]); colnames(x) <- as.character(as.character(rs.sub$SSBS[rs.sub$SS == n]))
rs.dis1 <- bind_rows(rs.dis1,
reshape2::melt(x) %>% tidyr::drop_na() %>% dplyr::rename(rsdis = value) %>%
dplyr::mutate(SS = n)
)
}
# Calculate for each pairing the respective distance between centroids
rs.dis2 <- data.frame()
for(n in unique(rs.sub$SS)){
x <- as.matrix( dist(rs.sub$PCA_BRDF_centroid[which(rs.sub$SS==n)],method = 'manhattan',diag=F,upper=F) )
diag(x) <- NA; x[upper.tri(x)] <- NA
rownames(x) <- as.character(rs.sub$SSBS[rs.sub$SS == n]); colnames(x) <- as.character(as.character(rs.sub$SSBS[rs.sub$SS == n]))
rs.dis2 <- bind_rows(rs.dis2,
reshape2::melt(x) %>% tidyr::drop_na() %>% dplyr::rename(rsdis = value) %>%
dplyr::mutate(SS = n)
)
}
if(nrow(rs.dis1)==0 | nrow(rs.dis2) == 0){
fit.full.dis1 <- NULL; fit.full.dis2 <- NULL
} else {
# Join
df.full1 <- full_join(df.dis, rs.dis1, by = c('Var1','Var2','SS')) %>% tidyr::drop_na()
df.full2 <- full_join(df.dis, rs.dis2, by = c('Var1','Var2','SS')) %>% tidyr::drop_na()
# Join in distance
df.full1 <- dplyr::left_join(df.full1, pdis %>%
dplyr::mutate(distance = normalize(distance)), by = c('Var1','Var2','SS'))
df.full2 <- dplyr::left_join(df.full2, pdis %>%
dplyr::mutate(distance = normalize(distance)), by = c('Var1','Var2','SS'))
assert_that(nrow(df.full1)>0,
all( between(df.full1$sr,0,1) ),
has_name(df.full1,'SS'),has_name(df.full2,'SS'))
# Filter to training SS
df.train1 <- df.full1 %>% dplyr::filter(SS %in% ss.train)
df.train2 <- df.full2 %>% dplyr::filter(SS %in% ss.train)
if(nrow(df.train1)<=2 | nrow(df.train2) <= 2){
fit.full.dis1 <- NULL; fit.full.dis2 <- NULL
} else {
# Fit
fit.full.dis1 <- glm(sr.n ~ distance + rsdis,data = df.train1,family = gaussian())
fit.full.dis2 <- glm(sr.n ~ distance + rsdis,data = df.train2,family = gaussian())
}
}
}
# Coefficient and MAPE extacting function
cvfit <- function(df, model, testingSS){
if(is.null(model) | nrow(df) <= 1) return( data.frame() )
assertthat::assert_that(has_name(df, 'SS'),
is.vector(testingSS))
# Predicts and extract stats
df$new <- predict(model,newdata = df,type = 'response')
# Rename observed
names(df)[which(names(df) == all.vars(model$formula)[1])] <- 'observed'
# Now extract and predict
out <- df %>% tidyr::drop_na(new) %>% # Remove sites with NA prediction
dplyr::group_by(SS) %>%
dplyr::summarise(
mape = mape(observed = observed,predicted = new),
smape = mape(observed = observed,predicted = new,type = 'smape')
) %>% ungroup()
out$dataset <- ifelse(out$SS %in% testingSS,'test','train')
return(out %>% dplyr::filter(!is.nan(mape)) )
}
# Now extract for each
out <- bind_rows(
out,
cvfit(sites.sub, fit.full.sr1, ss.test) %>% dplyr::mutate(metric = 'SR', term = 'EVIdis',iter = k),
cvfit(sites.sub, fit.full.sr2, ss.test) %>% dplyr::mutate(metric = 'SR', term = 'PCAcent',iter = k),
cvfit(sites.sub, fit.full.la1, ss.test) %>% dplyr::mutate(metric = 'LA', term = 'EVIdis',iter = k),
cvfit(sites.sub, fit.full.la2, ss.test) %>% dplyr::mutate(metric = 'LA', term = 'PCAcent',iter = k),
cvfit(sites.sub, fit.full.pie1, ss.test) %>% dplyr::mutate(metric = 'PIE', term = 'EVIdis',iter = k),
cvfit(sites.sub, fit.full.pie2, ss.test) %>% dplyr::mutate(metric = 'PIE', term = 'PCAcent',iter = k),
cvfit(df.full1, fit.full.dis1, ss.test) %>% dplyr::mutate(metric = 'SOR', term = 'EVIdis',iter = k),
cvfit(df.full2, fit.full.dis2, ss.test) %>% dplyr::mutate(metric = 'SOR', term = 'PCAcent',iter = k)
)
} # End of k iteration
results <- bind_rows(results, out %>% dplyr::mutate(grouping = gg))
rm(ss, out, sites.sub,sites.dis.sub, rs.sub)
}
# Save results
saveRDS(results,paste0(output_path, '/results_transferability.rds'))
#### Figure for reviewers ####
# Assess correlations between the several
sub <- subset(rs, between(EVI2_mean, 0,1) )
plot(EVI2_min~EVI2_mean, data = sub)
cor.test(sub$EVI2_mean, sub$NDWI_mean)
#### Testing ####
# Test with bird point counts
bird_points <- sites %>%
dplyr::filter(Sampling_method == 'point counts',TGrouping == 'Aves') %>% # Filter
mutate(logabundance = log10(Total_abundance+1)) %>%
left_join(., rs, by = 'SSBS')
plot(bird_points$logabundance~bird_points$NDVI_mean,col = bird_points$Biome)
subset_map(bird_points)
fit <- lme4::glmer(logabundance ~ EVI2_mean + (SS|Biome),data = bird_points, family = 'gaussian')
MuMIn::r.squaredGLMM(fit)