-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathqlearner.py
295 lines (264 loc) · 12.8 KB
/
qlearner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.kernel_approximation import RBFSampler
from sklearn.linear_model import SGDRegressor, LinearRegression, Ridge
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from problearner import PMLearner, PALearner
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures
from sklearn.ensemble import RandomForestRegressor
from sklearn.base import clone
class Qlearner:
def __init__(self, data, target_policy, PMLearner, PALearner, time_difference=None, gamma=0.9,
epoch=1000, verbose=False, model='forest', rbf_dim=5, use_mediator=True, eps=1e-2):
'''
Parameters
----------
data : TYPE
DESCRIPTION.
Returns
-------
None.
Examples
-------
>>> import pickle
>>> import os
>>> os.chdir("../raw")
>>> with open('iid_dataset.pkl', 'rb') as f:
>>> iid_dataset = pickle.load(f)
>>> palearner = PALearner(iid_dataset)
>>> palearner.train()
>>> pmlearner = PMLearner(iid_dataset)
>>> pmlearner.train()
>>> random_policy = np.copy(iid_dataset[1])
>>> np.random.shuffle(random_policy)
>>> qlearner = Qlearner(iid_dataset, random_policy, pmlearner, palearner, epoch=5, verbose=True)
>>> qlearner.train()
'''
self.data = data
self.action = np.copy(data[1])
self.mediator = np.copy(data[2])
self.action = np.reshape(self.action, (-1, 1))
self.mediator = np.reshape(self.mediator, (-1, 1))
self.reward = np.copy(data[3])
self.pmlearner = PMLearner
self.palearner = PALearner
if time_difference is None:
self.time_difference = np.ones(self.reward.shape[0])
else:
self.time_difference = np.copy(time_difference)
self.gamma = gamma
self.target_policy = target_policy
np.random.seed(1)
policy_action = np.apply_along_axis(target_policy, 1, data[4])
self.policy_action = policy_action
self.unique_action = np.unique(data[1])
if self.unique_action.ndim == 1:
tmp_unique_action = self.unique_action.reshape(-1, 1)
self.ohe_action_feature = OneHotEncoder(
drop='first', sparse=False).fit(tmp_unique_action)
self.action_dummy_size = np.size(
self.ohe_action_feature.categories_[0]) - 1
self.use_mediator = use_mediator
if use_mediator:
self.unique_mediator = np.unique(data[2])
if self.unique_mediator.ndim == 1:
tmp_unique_mediator = self.unique_mediator.reshape(-1, 1)
self.ohe_mediator_feature = OneHotEncoder(
drop='first', sparse=False).fit(tmp_unique_mediator)
self.mediator_dummy_size = np.size(
self.ohe_mediator_feature.categories_[0]) - 1
else:
pass
self.model = model
hyperparameter = rbf_dim
if self.model == "linear":
self.rbf_feature = RBFSampler(random_state=1, n_components=hyperparameter)
X_action = self.ohe_action_feature.fit_transform(self.action)
if X_action.ndim == 1:
X_action = X_action.reshape(-1, self.action_dummy_size)
if self.use_mediator:
X_mediator = self.ohe_mediator_feature.transform(self.mediator)
if X_mediator.ndim == 1:
X_mediator = X_mediator.reshape(-1, self.mediator_dummy_size)
X_am = np.hstack((X_action, X_mediator))
else:
X_am = X_action
## transform and concat
# X_state = self.rbf_feature.fit_transform(self.data[0])
# X = np.hstack((X_state, X_am))
## concat and transform
X_state = np.copy(self.data[0])
X = np.hstack((X_state, X_am))
if self.model == "linear":
self.train_X = self.rbf_feature.fit_transform(X)
# self.q_model = LinearRegression(random_state=1)
self.q_model = Ridge(solver='lsqr', alpha=1e-5, random_state=1)
elif model == "forest":
# print(hyperparameter)
# self.q_model = RandomForestRegressor(
# max_depth=6, random_state=1, min_samples_leaf=hyperparameter)
self.q_model = RandomForestRegressor(random_state=1, min_samples_leaf=hyperparameter)
else:
pass
self.epoch = epoch
self.score_array = np.zeros(epoch)
self.bias_array = np.zeros(epoch)
self.rmse_array = np.zeros(epoch)
self.rmedianse_array = np.zeros(epoch)
self.q_model_list = []
self.verbose = verbose
self.eps = eps
pass
def pesudo_response(self, reward, next_state, policy_action):
q_next_state = np.zeros(shape=reward.shape).flatten()
if self.use_mediator:
## Implementation 1:
# long_term_reward = self.pmlearner.get_pm_prediction(
# next_state, policy_action, mediator)
# for action_value in self.unique_action:
# # value = np.ones(shape=reward.shape)
# action_value = np.array([action_value])
# value = self.palearner.get_pa_prediction(
# next_state, action_value)
# q_value = self.get_q_prediction(
# next_state, action_value.reshape(1, -1), mediator).flatten()
# value *= q_value
# # print("Q-value: ", q_value)
# scale_value += value
# long_term_reward *= scale_value
# long_term_reward *= self.gamma
# long_term_reward += reward.flatten()
## Implementation V function (version 2):
## non-deterministic policy:
for action_star in self.unique_action:
action_star = np.array([action_star])
target_pa = np.apply_along_axis(self.target_policy, 1, next_state, action=action_star).flatten()
one_policy_action = np.repeat(action_star, next_state.shape[0]).reshape(-1, 1)
for action_value in self.unique_action:
action_value = np.array([action_value])
pa_pred = self.palearner.get_pa_prediction(next_state, action_value)
for mediator_value in self.unique_mediator:
mediator_value = np.array([mediator_value])
pm_pred = self.pmlearner.get_pm_prediction(next_state, one_policy_action, mediator_value)
q_next_state_prob = pm_pred * pa_pred * target_pa
q_next_state_prob *= self.get_q_prediction(next_state, action_value, mediator_value)
q_next_state += q_next_state_prob
pass
pass
pass
## deterministic policy:
# for mediator_value in self.unique_mediator:
# mediator_value = np.array([mediator_value])
# pm_pred = self.pmlearner.get_pm_prediction(next_state, policy_action, mediator_value)
# for action_value in self.unique_action:
# action_value = np.array([action_value])
# pa_pred = self.palearner.get_pa_prediction(next_state, action_value)
# q_next_state_prob = pm_pred * pa_pred
# q_next_state_prob *= self.get_q_prediction(next_state, action_value, mediator_value)
# q_next_state += q_next_state_prob
# pass
# pass
else:
for action_value in self.unique_action:
action_value = np.array([action_value])
pa_pred = np.apply_along_axis(self.target_policy, 1, next_state, action=action_value).flatten()
# pa_pred = self.palearner.get_pa_prediction(next_state, action_value)
q_value = self.get_q_prediction(next_state, action_value.reshape(1, -1)).flatten()
q_next_state += pa_pred * q_value
pass
pass
long_term_reward = reward.flatten()
# long_term_reward += self.gamma * q_next_state
long_term_reward += np.power(self.gamma, self.time_difference) * q_next_state
# # print("Pesudo response: ", long_term_reward)
return long_term_reward
def one_batch_fit(self):
pesudo_y = self.pesudo_response(np.copy(self.data[3]), np.copy(self.data[4]), np.copy(self.policy_action))
self.q_model = clone(self.q_model)
self.q_model.fit(self.train_X, pesudo_y)
self.q_model_list.append(self.q_model)
self.score_array[self.iteration_time] = self.q_model.score(self.train_X, pesudo_y)
error = pesudo_y - self.q_model.predict(self.train_X)
self.bias_array[self.iteration_time] = np.mean(error)
self.rmse_array[self.iteration_time] = np.sqrt(np.mean(np.square(error)))
self.rmedianse_array[self.iteration_time] = np.sqrt(np.median(np.square(error)))
# if self.verbose:
# print(self.q_model.score(X, pesudo_y))
pass
def fit(self):
# self.preprocess()
for i in range(self.epoch):
self.iteration_time = i
self.one_batch_fit()
if i >= 1:
score_difference = self.score_array[i] - self.score_array[i - 1]
rmse_difference = self.rmse_array[i] - self.rmse_array[i - 1]
if self.model == "linear":
coef_diff1 = self.q_model_list[i].coef_ - self.q_model_list[i - 1].coef_
coef_diff1 = np.linalg.norm(coef_diff1, ord=1)
coef_diff2 = np.abs(self.q_model_list[i].intercept_ - self.q_model_list[i - 1].intercept_)
coef_diff = coef_diff1 + coef_diff2
coef_norm = np.linalg.norm(self.q_model_list[i].coef_, ord=1)
coef_norm += np.abs(self.q_model_list[i].intercept_)
relative_coef_diff = coef_diff / coef_norm
# print((coef_diff, coef_norm, relative_coef_diff))
pass
# if score_difference < 1e-3 and self.iteration_time >= 5:
if relative_coef_diff < self.eps or coef_diff < 1e-4:
if rmse_difference > 0:
self.q_model = self.q_model_list[i - 1]
else:
self.q_model = self.q_model_list[i]
break
pass
pass
index = range(self.iteration_time+1)
self.score_array = self.score_array[index]
self.bias_array = self.bias_array[index]
self.rmse_array = self.rmse_array[index]
self.rmedianse_array = self.rmedianse_array[index]
def get_q_prediction(self, state, action, mediator=None):
if self.iteration_time == 0:
np.random.seed(1)
if self.use_mediator:
pred = np.random.normal(size=mediator.shape)
else:
pred = np.random.normal(size=(state.shape[0], 1))
# pred = np.copy(self.reward)
pred = pred.flatten()
else:
if action.shape[0] != state.shape[0]:
action = np.repeat(action, state.shape[0], axis=0)
if action.ndim == 1:
# action = action.reshape(-1, self.action_dummy_size)
action = action.reshape(-1, 1)
x_action = self.ohe_action_feature.transform(action)
if self.use_mediator:
if mediator.shape[0] != state.shape[0]:
mediator = np.repeat(mediator, state.shape[0], axis=0)
if mediator.ndim == 1:
# mediator = mediator.reshape(-1, self.mediator_dummy_size)
mediator = mediator.reshape(-1, 1)
x_mediator = self.ohe_mediator_feature.transform(mediator)
x_am = np.hstack((x_action, x_mediator))
else:
x_am = x_action
## tranform and concat
# x_state = self.rbf_feature.fit_transform(state)
# x = np.hstack((x_state, x_am))
## concat and tranform
x_state = np.copy(state)
x = np.hstack((x_state, x_am))
if self.model == "linear":
x = self.rbf_feature.transform(x)
pred = self.q_model.predict(x)
return pred
def goodness_of_fit(self, target_policy, new_state, new_action, new_mediator, new_reward, new_next_state):
np.random.seed(1)
new_policy_action = np.apply_along_axis(target_policy, 1, new_next_state)
y = self.pesudo_response(new_reward, new_next_state, new_policy_action)
y_pred = self.get_q_prediction(new_state, new_action, new_mediator)
rmse = np.sqrt(np.mean(np.square(y - y_pred)))
return rmse