-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
275 lines (197 loc) · 8.04 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Meghana - CS20B1060
# Madhav - CS20B1047
# Web Application to perform Statistical Analysis, EDA & Data Visualisation
import streamlit as st
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
st.set_option('deprecation.showPyplotGlobalUse', False)
class DataFrame_Loader():
def __init__(self):
print("Loadind DataFrame")
def read_csv(self,data):
self.df = pd.read_csv(data)
return self.df
class EDA_Dataframe_Analysis():
def __init__(self):
print("General_EDA object created")
def show_dtypes(self,x):
return x.dtypes.astype(str)
def show_columns(self,x):
return x.columns
def show_hist(self,x):
return x.hist()
def Show_Missing(self,x):
y=x.isna().sum()
return y
def show_hist(self,x):
return x.hist()
def Tabulation(self,x):
table = pd.DataFrame(x.dtypes,columns=['dtypes'])
table1 =pd.DataFrame(x.columns,columns=['Names'])
table = table.reset_index()
table['No of Missing'] = x.isnull().sum().values
table['No of Uniques'] = x.nunique().values
table['Percent of Missing'] = ((x.isnull().sum().values)/ (x.shape[0])) *100
table['First Observation'] = x.loc[0].values
table['Second Observation'] = x.loc[1].values
table['Third Observation'] = x.loc[2].values
return table.astype(str)
def Numerical_variables(self,x):
Num_var = [var for var in x.columns if x[var].dtypes!="object"]
Num_var = x[Num_var]
return Num_var
def categorical_variables(self,x):
cat_var = [var for var in x.columns if x[var].dtypes=="object"]
cat_var = x[cat_var]
return cat_var
def impute(self,x):
df=x.dropna()
return df
class Attribute_Information():
def __init__(self):
print("Attribute Information object created")
def Column_information(self,data):
data_info = pd.DataFrame(
columns=['No of observation',
'No of Variables',
'No of Numerical Variables',
'No of Factor Variables',
'No of Categorical Variables',
'No of Logical Variables',
'No of Date Variables',
'No of zero variance variables'])
data_info.loc[0,'No of observation'] = data.shape[0]
data_info.loc[0,'No of Variables'] = data.shape[1]
data_info.loc[0,'No of Numerical Variables'] = data._get_numeric_data().shape[1]
data_info.loc[0,'No of Factor Variables'] = data.select_dtypes(include='category').shape[1]
data_info.loc[0,'No of Logical Variables'] = data.select_dtypes(include='bool').shape[1]
data_info.loc[0,'No of Categorical Variables'] = data.select_dtypes(include='object').shape[1]
data_info.loc[0,'No of Date Variables'] = data.select_dtypes(include='datetime64').shape[1]
data_info.loc[0,'No of zero variance variables'] = data.loc[:,data.apply(pd.Series.nunique)==1].shape[1]
data_info =data_info.transpose()
data_info.columns=['value']
data_info['value'] = data_info['value'].astype(int)
return data_info
def __get_missing_values(self,data):
#Getting sum of missing values for each feature
missing_values = data.isnull().sum()
#Feature missing values are sorted from few to many
missing_values.sort_values(ascending=False, inplace=True)
#Returning missing values
return missing_values
def __iqr(self,x):
return x.quantile(q=0.75) - x.quantile(q=0.25)
def __outlier_count(self,x):
upper_out = x.quantile(q=0.75) + 1.5 * self.__iqr(x)
lower_out = x.quantile(q=0.25) - 1.5 * self.__iqr(x)
return len(x[x > upper_out]) + len(x[x < lower_out])
def num_count_summary(self,df):
df_num = df._get_numeric_data()
data_info_num = pd.DataFrame()
i=0
for c in df_num.columns:
data_info_num.loc[c,'Negative values count']= df_num[df_num[c]<0].shape[0]
data_info_num.loc[c,'Positive values count']= df_num[df_num[c]>0].shape[0]
data_info_num.loc[c,'Zero count']= df_num[df_num[c]==0].shape[0]
data_info_num.loc[c,'Unique count']= len(df_num[c].unique())
data_info_num.loc[c,'Negative Infinity count']= df_num[df_num[c]== -np.inf].shape[0]
data_info_num.loc[c,'Positive Infinity count']= df_num[df_num[c]== np.inf].shape[0]
data_info_num.loc[c,'Missing Percentage']= df_num[df_num[c].isnull()].shape[0]/ df_num.shape[0]
data_info_num.loc[c,'Count of outliers']= self.__outlier_count(df_num[c])
i = i+1
return data_info_num
def statistical_summary(self,df):
df_num = df._get_numeric_data()
data_stat_num = pd.DataFrame()
try:
data_stat_num = pd.concat([df_num.describe().transpose(),
pd.DataFrame(df_num.quantile(q=0.10)),
pd.DataFrame(df_num.quantile(q=0.90)),
pd.DataFrame(df_num.quantile(q=0.95))],axis=1)
data_stat_num.columns = ['count','mean','std','min','25%','50%','75%','max','10%','90%','95%']
except:
pass
return data_stat_num
def main():
st.title("Summary Statistics, EDA & Data Visualisation")
# st.info("Upload your csv file here ;)")
st.subheader("Exploratory Data Analysis")
data = st.file_uploader("Upload your dataset here", type=["csv"])
if data is not None :
df = load.read_csv(data)
st.success("CSV File Loaded successfully")
listy1 = ['Select','Data Preview','Data Types','Columns','Number of missing values','Column Information','Show Selected Columns']
listy2=['Select','Aggregation Tabulation','Number Count Summary','Statistical Summary','Numerical Variables','Categorical Variables','DropNA']
option1 = st.sidebar.selectbox('Understanding Data',listy1)
option2 = st.sidebar.selectbox('Analysis of data',listy2)
if option1==listy1[1]:
st.subheader("Preview of your data : ")
st.dataframe(df.head())
if option1==listy1[2]:
st.subheader("Data Types : ")
st.write(dataframe.show_dtypes(df))
if option1==listy1[3]:
st.subheader("Columns in the dataset : ")
st.write(dataframe.show_columns(df))
if option1==listy1[4]:
st.subheader("Number of missing values : ")
st.write(dataframe.Show_Missing(df))
if option1==listy1[5]:
st.subheader("Column Information : ")
st.write(info.Column_information(df))
if option1==listy1[6]:
selected_columns = st.multiselect("Select Columns :",dataframe.show_columns(df))
st.subheader("Selected columns : ")
new_df = df[selected_columns]
st.dataframe(new_df)
if option2==listy2[1]:
st.subheader("Aggregation Table : ")
st.write(dataframe.Tabulation(df))
if option2==listy2[2]:
st.subheader("Number Count Summary : ")
st.write(info.num_count_summary(df))
if option2==listy2[3]:
st.subheader("Statistical Analysis : ")
st.write(info.statistical_summary(df))
if option2==listy2[4]:
st.subheader("Numerical Variables : ")
num_df = dataframe.Numerical_variables(df)
numer_df=pd.DataFrame(num_df)
st.dataframe(numer_df)
if option2==listy2[5]:
st.subheader("Categorical Variables : ")
new_df = dataframe.categorical_variables(df)
catego_df=pd.DataFrame(new_df)
st.dataframe(catego_df)
if option2==listy2[6]:
st.subheader("Drop NA : ")
num_df = dataframe.Numerical_variables(df)
imp_df = dataframe.impute(num_df)
st.dataframe(imp_df)
st.download_button(
label="Download data as CSV",
data=imp_df.to_csv(),
file_name='removed_Na.csv',
mime='text/csv',
)
listy3 = ['Select','Histogram','Bar graph','Box plot','Scatter plot','Dist plot','Frequency Distribution']
option3 = st.sidebar.selectbox('Univariate Analysis',listy3)
listy4 = ['Select','Bivariate Scattering','Heatmap','Multivariate']
option4 = st.sidebar.selectbox('Multivariate Analysis',listy4)
if option3==listy3[1]:
all_columns_names = dataframe.show_columns(df)
selected_columns_names = st.selectbox("Select Column for Histogram :",all_columns_names)
st.write(dataframe.show_hist(df[selected_columns_names]))
st.pyplot()
if option3==listy3[5]:
all_columns_names = dataframe.show_columns(df)
selected_columns_names = st.selectbox("Select Columns Distplot :",all_columns_names)
st.write(dataframe.Show_DisPlot(df[selected_columns_names]))
st.pyplot()
if __name__ == '__main__':
load = DataFrame_Loader()
dataframe = EDA_Dataframe_Analysis()
info = Attribute_Information()
main()