-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
224 lines (184 loc) · 10 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import logging, os
import sys
import pdb
from pathlib import Path
import torch
from core.utils import Logger
from torch.utils.data import DataLoader
from torch import optim, nn
from core import build_model, build_dataset, train
from core.train import train_epoch
from core.validation import val_epoch
from core.test import test
from core.build_model import MODELS
def run(args, logger):
# Build model
epoch_start = 0
load_optimizer = 0
checkpoint = None
if args.check_resume and args.do_train:
checkpoint_path = os.path.join(args.output_dir, 'save_last.pth')
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
load_optimizer = True
epoch_start = checkpoint['epoch']
logger.info(f"Found previous checkpoint, loading and starting at {epoch_start}")
if epoch_start == args.epochs:
logger.info(f"Model completed training. If this is not expected, remove `check_resume` flag."
f" Skipping training...")
return
args.pretrain_pth = checkpoint_path
args.pretrain_dataset = args.train_dataset
logger.info(f"Starting building {args.model_type}...")
model, parameters = build_model.fetch_model(logger, args.model_type, train_dataset=args.train_dataset,
pretrain_dataset=args.pretrain_dataset,
pretrained_pth=args.pretrain_pth)
model.cuda()
logger.info(f"Completed building {args.model_type}")
test_dataset = build_dataset.ActionRecognitionUniformFrames(args, 'test')
# Test on different perturbation dataset
test_dataloader = DataLoader(test_dataset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.num_workers)
if args.nesterov:
dampening = 0
else:
dampening = args.dampening
if args.do_train:
train_dataset = build_dataset.ActionRecognitionUniformFrames(args, 'train')
val_dataset = build_dataset.ActionRecognitionUniformFrames(args, 'val')
# Perturbation being trained on and validation dataset for that
train_dataloader = DataLoader(train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
num_workers=args.num_workers)
val_dataloader = DataLoader(val_dataset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.num_workers)
train_logger = Logger(
os.path.join(args.output_dir, 'train.log'),
['epoch', 'loss', 'acc', 'lr'])
train_batch_logger = Logger(
os.path.join(args.output_dir, 'train_batch.log'),
['epoch', 'batch', 'iter', 'loss', 'acc', 'lr'])
val_logger = Logger(
os.path.join(args.output_dir, 'val.log'), ['epoch', 'loss', 'acc'])
logger.info("Initializing optimizer and learning schedule.")
optimizer = optim.SGD(
parameters,
lr=args.learning_rate,
momentum=args.momentum,
dampening=dampening,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
if load_optimizer:
logger.info(f"Loading previous optimizer at {checkpoint_path}")
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=args.lr_patience)
criterion = nn.CrossEntropyLoss()
for epoch in range(epoch_start, args.epochs):
train_epoch(epoch, train_dataloader, model, criterion, optimizer, args, train_logger, train_batch_logger)
val_loss = val_epoch(epoch, val_dataloader, model, criterion, args,val_logger)
scheduler.step(val_loss)
logger.info(f"Running testing on {args.test_perturbation} on {args.test_severity}.")
model.eval()
test(logger, test_dataloader, model, args, test_dataset.classnames)
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Runs training on perturbed datasets for selected models.')
# Model specific arguments
parser.add_argument('model_type', type=str,
help=f"The model type you would like to use. Options are {' ,'.join(MODELS)}")
parser.add_argument('--pretrain_pth', default=None, type=str)
# Run configurations
parser.add_argument('--output_dir', default='output', type=str,
help='Where you would like to store the results.')
parser.add_argument('--do_train', const=True, default=False, action="store_const")
parser.add_argument('--no_softmax_in_test', const=True, default=False, action="store_const")
parser.add_argument('--num_workers', default=4, type=int)
# Dataset specific
parser.add_argument('--pretrain_dataset', default=None, type=str,
help='What dataset the model was pre-trained on. This determines the linear prediction head on '
'initial build.')
parser.add_argument('--train_dataset', default='ucf101', type=str,
help='What dataset to train a model on. This determines the change in the linear prediction '
'head for training.')
parser.add_argument('--test_dataset', default='ucf101', type=str)
parser.add_argument('--train_perturbation', default=None, type=str,
help='Which set of perturbations to use on the training data. Options can be found in '
'`video_perturb.py` but are typically `mixed`, `spatial`, `temporal`, or `pixmix`.')
parser.add_argument('--train_severity', default=None, type=int, help='If choosing just one type of perturbation, '
'you should choose a severity as well.')
parser.add_argument('--test_perturbation', default=None, type=str)
parser.add_argument('--test_severity', default=None, type=int)
# Video extraction specific
parser.add_argument('--root_dir', default='/media/mschiappa/Elements/UCF101/videos', type=str)
# parser.add_argument('--num_frames', default=16, type=int)
# parser.add_argument('--input_res', default=112, type=int)
parser.add_argument('--sample_type', default='uniform', type=str)
parser.add_argument('--fix_start', const=True, default=False, action="store_const")
parser.add_argument('--train_path', default='/media/mschiappa/Elements/UCF101/trainlist01.txt', type=str,
help='training annotations for the dataset being trained on.')
parser.add_argument('--test_path', default='/media/mschiappa/Elements/UCF101/vallist01.txt', type=str,
help='testing annotations for the dataset being trained on.')
# Train configurations
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--checkpoint', default=10, type=int)
parser.add_argument('--check_resume', const=True, default=False, action="store_const")
parser.add_argument('--train_batch_size', default=16, type=int)
parser.add_argument('--test_batch_size', default=32, type=int)
parser.add_argument('--dampening', default=0.9, type=float, help='dampening of SGD')
parser.add_argument('--nesterov', action='store_true', help='Nesterov momentum')
parser.add_argument('--lr_patience', default=10, type=int,
help='Patience of LR scheduler. See documentation of ReduceLROnPlateau.')
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum')
parser.add_argument('--weight_decay', default=1e-3, type=float, help='Weight Decay')
args = parser.parse_args()
if args.pretrain_pth is not None: # and args.do_train:
output_dir = os.path.join(args.output_dir, args.model_type, f'ft_{args.train_dataset}',
f"{args.train_perturbation}_{args.train_severity}")
else:
output_dir = os.path.join(args.output_dir, args.model_type, f'scratch_{args.train_dataset}',
f"{args.train_perturbation}_{args.train_severity}")
log_path = os.path.join(output_dir, 'log.txt')
if not os.path.exists(output_dir):
Path(output_dir).mkdir(parents=True)
if os.path.isfile(log_path) and os.path.isfile(os.path.join(output_dir, 'save_50.pth')):
print(f"Model already exists. Exiting...")
sys.exit()
if os.path.isfile(log_path) and not args.do_train:
log_path = os.path.join(output_dir, f'test_{args.test_perturbation}_{args.test_severity}.txt')
# if os.path.isfile(log_path):
# print(f"Test json file already exists. Exiting...")
# sys.exit()
args.output_dir = output_dir
# Create a Logger Object - Which listens to everything
logger = logging.getLogger(os.path.basename(__file__))
logger.setLevel(logging.DEBUG)
# Register the Console as a handler
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# Log format includes date and time
formatter = logging.Formatter('%(asctime)s %(levelname)-5s %(message)s')
ch.setFormatter(formatter)
# If want to print output to screen
logger.addHandler(ch)
# Create a File Handler to listen to everything
fh = logging.FileHandler(log_path, mode="w")
fh.setLevel(logging.DEBUG)
# Log format includes date and time
fh.setFormatter(formatter)
# Register it as a listener
logger.addHandler(fh)
# Print arguments
logger.info(f"Storing log path in {log_path}")
logger.info("Model configurations")
logger.info('-------------------------')
for arg in vars(args):
logger.info(f"{arg}: {getattr(args, arg)}")
run(args, logger)