forked from milesial/Pytorch-UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_dataset.py
202 lines (170 loc) · 8.3 KB
/
evaluate_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.utils import save_image, make_grid
from pathlib import Path
from utils.data_loading import BasicDataset, CarvanaDataset, ToolDataset, full_dataset, datasets_definiton
from unet import UNet
from utils.utils import plot_img_and_mask
from torch.utils.data import DataLoader, random_split, Subset
from evaluate import evaluate
import csv
import time
import matplotlib.pyplot as plt
import torch
dir_img = Path('./data/imgs/')
dir_mask = Path('./data/masks/')
dir_train_img = Path('./data/train/imgs/')
dir_train_mask = Path('./data/train/masks/')
dir_val_img = Path('./data/val/imgs/')
dir_val_mask = Path('./data/val/masks/')
dir_test_img = Path('./data/test/imgs/')
dir_test_mask = Path('./data/test/masks/')
full_img_size = (140, 175)
def qualitative_results(dataset, path, model, device='cpu'):
len_dataset = len(dataset)
# dataset = Subset(dataset, range(0, len_dataset, len_dataset//6))
row_n = 14
dataset_loader = DataLoader(dataset, batch_size= len_dataset, shuffle=False)
batch = next(iter(dataset_loader))
images, true_masks = batch['image'], batch['mask']
images = images.to(device=device)
true_masks = true_masks.to(device=device).unsqueeze(1).float()
out_masks = model(images)
out_masks = out_masks.argmax(dim=1).unsqueeze(1).float()
images = F.interpolate(images, (full_img_size[1], full_img_size[0]), mode='bilinear')
true_masks = F.interpolate(true_masks, (full_img_size[1], full_img_size[0]), mode='bilinear')
out_masks = F.interpolate(out_masks, (full_img_size[1], full_img_size[0]), mode='bilinear')
save_image(make_grid(images, nrow=row_n), os.path.join(path, 'images.png'))
save_image(make_grid(true_masks, nrow=row_n), os.path.join(path,'true_masks.png'))
save_image(make_grid(out_masks, nrow=row_n), os.path.join(path,'out_masks.png'))
return
def get_args():
parser = argparse.ArgumentParser(description='Predict masks from input images')
parser.add_argument('--model', '-m', default='MODEL.pth', metavar='FILE',
help='Specify the file in which the model is stored')
parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision')
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
parser.add_argument('--default', action='store_true', default=False, help='Save checkpoints')
parser.add_argument('--dataset_name', type=str, default='1-tool', help='Name of the dataset')
parser.add_argument('--masking_method', type=str, default='sdf', help='Method to create masks')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
net = UNet(n_channels=1, n_classes=args.classes, bilinear=args.bilinear)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('cuda:2')
net.to(device=device)
state_dict = torch.load(args.model, map_location=device)
mask_values = state_dict.pop('mask_values', [0, 1])
net.load_state_dict(state_dict)
net.eval()
img_scale = 0.5
val_percent = 0.1
batch_size = 32
if args.default:
try:
dataset = CarvanaDataset(dir_img, dir_mask, img_scale)
except (AssertionError, RuntimeError, IndexError):
dataset = BasicDataset(dir_img, dir_mask, img_scale)
# 2. Split into train / validation partitions
n_val = int(len(dataset) * val_percent)
n_train = len(dataset) - n_val
train_set, val_set = random_split(dataset, [n_train, n_val], generator=torch.Generator().manual_seed(0))
test_set = val_set
else:
dataset_name = args.dataset_name
start_time = time.time()
train_set, val_set, test_set, test_unseen_set, vis_set = full_dataset(dataset_name, args.masking_method, device=device)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
print(f"Execution time: {execution_time/60} minutes")
# 3. Create data loaders
loader_args = dict(batch_size=batch_size, num_workers=os.cpu_count(), pin_memory=True)
train_loader = DataLoader(train_set, shuffle=False)
val_loader = DataLoader(val_set, shuffle=False)
test_loader = DataLoader(test_set, shuffle=False)
test_unseen_set_loader = DataLoader(test_unseen_set, shuffle=False)
train_score, _ = evaluate(net, train_loader, device, args.amp)
val_score, _ = evaluate(net, val_loader, device, args.amp)
test_score, _ = evaluate(net, test_loader, device, args.amp)
test_unseen_score, _ = evaluate(net, test_unseen_set_loader, device, args.amp)
print(f'Training Dice score: {train_score:.4f}')
print(f'Validation Dice score: {val_score:.4f}')
print(f'Test Dice score: {test_score:.4f}')
print(f'Test Unseen Dice score: {test_unseen_score:.4f}')
# Save scores in a CSV file
scores = [
['Dataset', 'Score'],
['Training', train_score.item()],
['Validation', val_score.item()],
['Test', test_score.item()],
['Test Unseen', test_unseen_score.item()]
]
train_tools, test_tools = datasets_definiton(args.dataset_name)
scores_per_tool = []
model_results_path = os.path.join('./results',os.path.basename(args.model).replace('.pth',''))
test_len = len(test_set)//len(train_tools)
for i, tool in enumerate(train_tools):
tool_set = Subset(test_set, range(i*test_len, (i+1)*test_len))
tool_loader = DataLoader(tool_set, shuffle=False)
tool_score, _ = evaluate(net, tool_loader, device, args.amp)
scores_per_tool.append([i+1, tool_score.item()])
scores_per_tool_file = os.path.join(model_results_path, 'test', 'scores_per_tools.pt')
torch.save(scores_per_tool, scores_per_tool_file)
plt.figure()
plt.bar(*zip(*scores_per_tool))
plt.title('Test scores per tool')
plt.xlabel('Tool')
plt.ylabel('Dice Score')
plt.xticks(range(1, len(train_tools) + 1))
plt.savefig(os.path.join(model_results_path, 'test', 'test_scores_per_tool.png'))
scores_per_tool = []
test_unseen_len = len(test_unseen_set)//len(test_tools)
for i, tool in enumerate(test_tools):
tool_set = Subset(test_unseen_set, range(i*test_unseen_len, (i+1)*test_unseen_len))
tool_loader = DataLoader(tool_set, shuffle=False)
tool_score, _ = evaluate(net, tool_loader, device, args.amp)
scores_per_tool.append([i+1, tool_score.item()])
scores_per_tool_file = os.path.join(model_results_path, 'test_unseen', 'scores_per_tools.pt')
torch.save(scores_per_tool, scores_per_tool_file)
plt.figure()
plt.bar(*zip(*scores_per_tool))
plt.title('Test Unseen scores per tool')
plt.xlabel('Tool')
plt.ylabel('Dice Score')
plt.xticks(range(1, len(test_tools) + 1))
plt.savefig(os.path.join(model_results_path, 'test_unseen', 'test_unseen_scores_per_tool.png'))
# import pdb; pdb.set_trace()
if not os.path.exists(model_results_path):
os.makedirs(model_results_path)
train_path = Path(os.path.join(model_results_path, 'train'))
val_path = Path(os.path.join(model_results_path, 'val'))
test_path = Path(os.path.join(model_results_path, 'test'))
test_unseen_path = Path(os.path.join(model_results_path, 'test_unseen'))
if not train_path.exists():
train_path.mkdir(parents=True)
if not val_path.exists():
val_path.mkdir(parents=True)
if not test_path.exists():
test_path.mkdir(parents=True)
if not test_unseen_path.exists():
test_unseen_path.mkdir(parents=True)
scores_path = os.path.join(model_results_path, 'scores.csv')
with open(scores_path, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerows(scores)
print('Scores saved in scores.csv')
# 4. Qualitative evaluation
qualitative_results(vis_set[0], train_path, net, device)
qualitative_results(vis_set[1], val_path, net, device)
qualitative_results(vis_set[2], test_path, net, device)
qualitative_results(vis_set[3], test_unseen_path, net, device)
print('Qualitative results saved in ./results/')