-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathDay 1_Data_Preprocessing.py
76 lines (70 loc) · 2.21 KB
/
Day 1_Data_Preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#Day 1: Data Prepocessing
#Step 1: Importing the libraries
import numpy as np
import pandas as pd
#Step 2: Importing dataset
dataset = pd.read_csv('../datasets/Data.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
print("Step 2: Importing dataset")
print("X")
print(X)
print("Y")
print(Y)
#Step 3: Handling the missing data
# If you use the newest version of sklearn, use the lines of code commented out
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
#from sklearn.preprocessing import Imputer
# axis=0表示按列进行
#imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])
print("---------------------")
print("Step 3: Handling the missing data")
print("step2")
print("X")
print(X)
#Step 4: Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
#labelencoder_X = LabelEncoder()
#X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])
#Creating a dummy variable
#print(X)
ct = ColumnTransformer([("", OneHotEncoder(), [0])], remainder = 'passthrough')
X = ct.fit_transform(X)
#onehotencoder = OneHotEncoder(categorical_features = [0])
#X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
print("---------------------")
print("Step 4: Encoding categorical data")
print("X")
print(X)
print("Y")
print(Y)
#Step 5: Splitting the datasets into training sets and Test sets
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)
print("---------------------")
print("Step 5: Splitting the datasets into training sets and Test sets")
print("X_train")
print(X_train)
print("X_test")
print(X_test)
print("Y_train")
print(Y_train)
print("Y_test")
print(Y_test)
#Step 6: Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
print("---------------------")
print("Step 6: Feature Scaling")
print("X_train")
print(X_train)
print("X_test")
print(X_test)