-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
650 lines (526 loc) · 33.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1.0" name="viewport">
<title>ml4its2023</title>
<meta content="" name="description">
<meta content="" name="keywords">
<!-- Favicons -->
<link href="assets/img/favicon.png" rel="icon">
<link href="assets/img/apple-touch-icon.png" rel="apple-touch-icon">
<!-- Google Fonts -->
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,300i,400,400i,700,700i|Raleway:300,400,500,700,800"
rel="stylesheet">
<!-- Vendor CSS Files -->
<link href="assets/vendor/aos/aos.css" rel="stylesheet">
<link href="assets/vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<link href="assets/vendor/bootstrap-icons/bootstrap-icons.css" rel="stylesheet">
<link href="assets/vendor/glightbox/css/glightbox.min.css" rel="stylesheet">
<link href="assets/vendor/swiper/swiper-bundle.min.css" rel="stylesheet">
<!-- Template Main CSS File -->
<link href="assets/css/style.css" rel="stylesheet">
<!-- =======================================================
* Template Name: TheEvent - v4.1.0
* Template URL: https://bootstrapmade.com/theevent-conference-event-bootstrap-template/
* Author: BootstrapMade.com
* License: https://bootstrapmade.com/license/
======================================================== -->
</head>
<body>
<!-- ======= Header ======= -->
<header id="header" class="d-flex align-items-center ">
<div class="container-fluid container-xxl d-flex align-items-center">
<div id="logo" class="me-auto">
<!-- Uncomment below if you prefer to use a text logo -->
<h2><a href="index.html">ML4ITS2023</a></h2>
<!--<a href="index.html" class="scrollto"><img src="assets/img/logo.png" alt="" title=""></a>-->
</div>
<nav id="navbar" class="navbar order-last order-lg-0">
<ul>
<!-- <li><a class="nav-link scrollto active" href="#hero">Home</a></li>
<li><a class="nav-link scrollto" href="#aboutt">Call for Papers</a></li>
<li><a class="nav-link scrollto" href="#organization">Organization</a></li>
<li><a class="nav-link scrollto" href="#submission">Submission</a></li>
<li><a class="nav-link scrollto" href="#dates">Dates</a></li>
<li><a class="nav-link scrollto" href="#schedule">Schedule</a></li>
<li><a class="nav-link scrollto" href="#supporters">Partners</a></li> -->
<li><a href="#hero">Home</a></li>
<li><a href="#aboutt">About the workshop</a></li>
<li><a href="#organization">Organization</a></li>
<li><a href="#submission">Submission</a></li>
<li><a href="#dates">Dates</a></li>
<li><a href="#contributions">Accepted Contributions</a></li>
<li><a href="#schedule">Schedule</a></li>
<li><a href="#supporters">Partners</a></li>
<!-- <li class="dropdown"><a href="#"><span>Drop Down</span> <i class="bi bi-chevron-down"></i></a>
<ul>
<li><a href="#">Drop Down 1</a></li>
<li class="dropdown"><a href="#"><span>Deep Drop Down</span> <i class="bi bi-chevron-right"></i></a>
<ul>
<li><a href="#">Deep Drop Down 1</a></li>
<li><a href="#">Deep Drop Down 2</a></li>
<li><a href="#">Deep Drop Down 3</a></li>
<li><a href="#">Deep Drop Down 4</a></li>
<li><a href="#">Deep Drop Down 5</a></li>
</ul>
</li>
<li><a href="#">Drop Down 2</a></li>
<li><a href="#">Drop Down 3</a></li>
<li><a href="#">Drop Down 4</a></li>
</ul>
</li> -->
<li><a href="#contact">Contact</a></li>
<li><a href="https://ml4its.github.io/ml4its2021/">ML4ITS2021</a></li>
</ul>
<i class="bi bi-list mobile-nav-toggle"></i>
</nav><!-- .navbar -->
</div>
</header><!-- End Header -->
<!-- ======= Hero Section ======= -->
<section id="hero">
<!-- <div class="hero-container" data-aos="zoom-in" data-aos-delay="100"> -->
<div class="hero-container">
<p>2nd International Workshop on</p>
<h1 class="mb-4 pb-0"><span>M</span>achine <span>L</span>earning for <span>I</span>rregular <span>T</span>ime
<span>S</span>eries (ML4ITS2023): Advances in Generative Models, Global Models and Self-Supervised Learning
</h1>
<p class="mb-4 pb-0">Co-located with <a href="https://2023.ecmlpkdd.org/">ECML PKDD 2023</a></p>
<p class="mb-4 pb-0">September 22, 2023, 9:00-12:00 <a href="https://www.polito.it/en/polito/about-us/campuses-and-maps?sellocale=bl_id%253DTO_CIT06%2526fl_id%253DXPTE%2526rm_id%253D003&lang=en">Room R3</a></p>
<p class="mb-4 pb-0">This workshop edition includes a tutorial on <a
href=" https://sites.google.com/view/reservoir-computing-tf/activities/ecmlpkdd-2023-tutorial-on-reservoir-computing">Sustainable
Deep Learning for Time-series: Reservoir Computing</a></p>
<!-- <a href="https://www.youtube.com/watch?v=jDDaplaOz7Q" class="glightbox play-btn mb-4"></a> -->
<a href="#aboutt" class="about-btn scrollto">About The Event</a>
</div>
</section><!-- End Hero Section -->
<main id="main">
<!-- ======= About Section ======= -->
<section id="aboutt">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<br>
<h2>About the workshop</h2>
</div>
<div class="row">
<p style="margin-top:0.1cm;">
<p> Machine Learning and in particular, <b>Deep learning</b> for <b>irregular time series</b> is an essential
research area that aims to develop machine learning models capable of effectively handling time series data
that is unevenly spaced, irregularly sampled, noisy, has multiresolution characteristics, contains
anomalies, or has missing data. The need for research in deep learning for irregular time series is
particularly important for real-world applications, where data is often irregularly collected. Time series
data is prevalent in fields such as finance, healthcare, and environmental science, and improved analysis
and modeling techniques can significantly enhance decision-making, enable accurate predictions, and increase
understanding of complex systems. By advancing deep learning for irregular time series, we can make a
positive impact on a variety of fields and contribute to the progress and well-being of society.
</p>
<p>
In many real-world applications, time series data is often collected at irregular intervals, making it
challenging to model using traditional time series methods. Deep learning models, on the other hand, have
shown promising results in handling irregular time series data due to their ability to learn complex
temporal patterns from large datasets. The research in this area involves developing novel deep learning
models that can effectively model irregular time series data, as well as developing new techniques for
pre-processing and cleaning the data. Some specific research topics in this area include 1) <b>Recurrent
neural networks (RNNs)</b> and their variants such as long short-term memory (LSTM) networks and gated
recurrent units (GRUs) for modeling irregular time series data; 2) <b>Attention mechanisms</b> that can
dynamically weigh the importance of different time steps in irregular time series; 3) <b>Novel loss
functions</b> that can handle missing data and irregular sampling intervals; 4) Techniques for <b>imputing
missing data</b> in irregular time series; 5) <b>Anomaly detection</b>.
</p>
<p>
Overall, deep learning for irregular time series has the potential to improve the <b>accuracy</b> and
<b>robustness</b> of time series modeling in a variety of fields, including finance, healthcare, and
environmental science.
</p>
<p>
In many <b>real-world applications</b>, we have the following two scenarios: 1) the <b>amount of available
training data is limited</b>, or 2) there is a <b>huge amount of available data</b> which is <b>carcely or
not labeled</b> due to <b>high costs</b> of data collection and <b>annotation</b>. As a result, the future
of Artificial Intelligence (AI) will be about “doing more with less”. There is a need for focusing on modern
AI techniques that can extract value from such challenging datasets. These considerations can also
contribute to the increasing need to address <b>sustainability</b> and <b>privacy</b> aspects of ML and AI.
Furthermore, there is a need to overcome the issue of limited availability of data and scarcity of labeled
data for <b>(multivariate) time series</b> modeling. In this context, <b>heterogeneity</b> of the data (e.g.
non-stationarity, multi-resolution, irregular sampling) as well as <b>noise</b>, pose further challenges.
</p>
<p>
The main scope of this workshop is to advance the state-of-the-art in time series analysis for “irregular”
time series. We define time series to be <b>“irregular”</b> if they fall under one or several of the
following categories:
<b>Short</b>: univariate and multivariate time series with a limited amount of data and history;
<b>Multiresolution</b>: multivariate time series where each signal has a different granularity or resolution
in terms of sampling frequency;
<b>Noisy</b>: univariate/multivariate time series with some additional perturbation appearing in different
forms. In this class, we also include time series with missing data;
<b>Heterogeneous</b>: multivariate time series, usually collected by many physical systems, that exhibit
different types of embedded, statistical patterns and behaviours;
<b>Scarcely labeled</b> and <b>unlabeled</b>: univariate/multivariate time series where only a small part of
the data is labeled or completely unlabeled.
</p>
<p>
This workshop follows the successful <a href="https://ml4its.github.io/ml4its2021/">ML4ITS2021</a> edition
at ECML-PKDD 2021 and intends to offer the ideal context for dissemination and cross-pollination of novel
ideas in designing <b>machine learning models suitable to deal with irregular time series</b>. Accordingly,
topics of interest for the workshop include, but are not limited to:
<ul id="list">
<li>Generative models for Synthetic Data generation, including GANs, diffusion models and masked modeling in
time series domain,</li>
<li>Methods for Data Imputation and Denoising of time series data,</li>
<li>Transfer Learning and Transformer architectures for Time Series forecasting and classification (e.g.,
using FNN, CNN, Recurrent NN, LSTM),</li>
<li>Graph Neural Networks for Anomaly Detection and Failure Prediction in the time series domain,</li>
<li>Quantification of uncertainties in time series analysis,</li>
<li>Use of Deep Neural Networks (e.g., FNN, CNN, Recurrent NN, LSTMs) for Time Series modeling and
forecasting,</li>
<li>Unsupervised and Self-Supervised Learning for different Time Series related tasks,</li>
<li>Few-Shot Learning and Time Series Classification in a low-data regime,</li>
<li>Physical-informed Deep Neural Networks for Time Series Forecasting,</li>
<li>(Deep) Reservoir Computing and Spiking Neural Networks for Time Series and Structured data analysis,
</li>
<li>Representation Learning for Time Series.</li>
</ul>
</p>
<p>
This workshop will concentrate on three specific areas: A) <b>generative models</b> for time series,
including GANs, diffusion models, and masked modeling, B) <b>self-supervised learning</b> for time series,
and C) <b>global models</b>.<!-- This workshop focuses on these areas for the following reasons:
<ul id="list">
<li>A) <b>Generative models</b> for time series: Generative models enable the synthesis of new time series data, which can be employed to augment existing datasets, perform data imputation, or even simulate various scenarios. Developing more advanced generative models specific to time series can lead to a better understanding of underlying temporal patterns, which, in turn, can improve forecasting, anomaly detection, and decision-making in fields like finance, healthcare, and environmental science.</li>
<li>B) <b>Self-supervised learning</b> for time series: In real-world situations, obtaining labeled data for time series can be challenging, time-consuming, and expensive. Self-supervised learning techniques can leverage the vast amounts of unlabeled data available to improve model performance without relying on manual annotation. By focusing on self-supervised learning methods for time series, researchers can develop more efficient and scalable models, ultimately leading to better insights and predictions even with limited labeled data.</li>
<li>C) <b>Global models</b>: Traditional machine learning models may be trained on smaller, local datasets, which can limit their ability to generalize to new and diverse data. By training global models on large, centralized datasets from multiple sources, researchers can create more robust and accurate models. These global models can benefit from the diverse range of training data, leading to improved performance and better generalization capabilities. This is particularly important for time series analysis, as it enhances forecasting and decision-making across various domains. </li>
</ul>-->
</p>
<p>
Overall, generative models and global models are both promising areas for further research in time series
analysis, and have the potential to significantly improve the accuracy and robustness of machine learning
models for time series data.
We encourage submissions that address these areas in the context of irregular time series.
</p>
</div>
</div>
</section><!-- End About Section -->
<!-- ======= Organization Section ======= -->
<section id="organization">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<br>
<h2>Organization</h2>
</div>
<h3>Program Chairs</h3>
<p>
<ul id="list">
<li> Massimiliano Ruocco (SINTEF Digital / Norwegian University of Science and Technology)</li>
<li> Erlend Aune (Abelee / Norwegian University of Science and Technology / BI)</li>
<li> Claudio Gallicchio (University of Pisa)</li>
</ul>
</p>
<h3>Program Committee</h3>
<p>
<ul id="list">
<li>Sara Malacarne (Telenor Research)</li>
<li>Pierluigi Salvo Rossi (Norwegian University of Science and Technology)</li>
<li>Alfredo Clemente (Sintef DIGITAL)</li>
<li>Eliezer de Souza da Silva (Norwegian University of Science and Technology)</li>
<li>Bjorn Magnus Mathisen (Sintef DIGITAL) </li>
<li>Emil Stoltenberg (BI)</li>
<li>Per Gunnar Auran (Sintef DIGITAL)</li>
<li>Jo Eidsvik (Norwegian University of Science and Technology)</li>
<li>Leif Anders Thorsrud (BI)</li>
<li>Pablo Ortiz (Telenor Research)</li>
<li>Vegard Larsen (BI)</li>
<li>Juan-Pablo Ortega (Nanyang Technological University, Singapore)</li>
<li>Azarakhsh Jalalvand (Princeton University, USA)</li>
<li>Benjamin Paaßen (Bielefeld University, Germany)</li>
<li>Petia Koprinkova-Hristova (Institute of Information and Communication Technologies, Bulgarian Academy of
Sciences)</li>
<li>Andrea Ceni (University of Pisa, Italy)</li>
</ul>
</p>
</div>
</section><!-- End Organization Section -->
<section id="submission">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<br>
<h2>Submission</h2>
</div>
<div class="row">
<p>
Papers must be written in English and formatted according to the Springer <a
href="https://www.springer.com/gp/computer-science/lncs/new-latex-templates-available/15634678">LNCS</a>
guidelines followed by the main conference. Regular and short papers presenting work completed or in
progress are invited. <b>Regular papers</b> are expected to provide original and innovative contributions.
Max length: 14 pages including references. <b>Short papers</b>, describing innovative ongoing research
showing relevant preliminary results, are maximum 6 pages. We also allow <b>presentation only</b>
contributions (no page restrictions, not included in proceedings), which may include work already published
elsewhere or ongoing research that is relevant and may solicit fruitful discussion at the workshop.
Submissions should be made
through the workshop's <a
href="https://cmt3.research.microsoft.com/ECMLPKDDworkshop2023/Submission/Index">CMT submission
page</a>. After logging in, create a new submission in your author console, and select the track on
"ML4ITS2023".
</p>
<p>
Papers authors will have the faculty to opt-in or opt-out for publication of their submitted papers in the
joint post-workshop <b>proceedings published by Springer Communications in Computer and Information
Science</b>, organised by focused scope and possibly indexed by WOS. Notice that <b>novelty is not
essential for contributed papers that will not appear in the workshop proceedings</b>, as we invite papers
that have already been presented or published elsewhere with the aim of maximizing the dissemination and
cross-pollination of ideas among the topic of the workshop.
</p>
<p>
At least one author of each accepted paper must have a full registration and be in-person to present the
paper. Papers without a full registration or in-presence presentation won't be included in the post-workshop
Springer proceedings.
</p>
</div>
</div>
</section><!-- End About Submission -->
<section id="dates">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<br>
<h2>Dates</h2>
<!--<p>Here some of the most important dates</p>-->
</div>
<div class="row">
<p>
The following deadlines are in AoE time zone (UTC – 12).
<ul id="list">
<li>Paper submission deadline: <i><b><s>June 12, 2023</s></b></i> <i><b>June 23, 2023</b></i> </li>
<li>Acceptance notification: <i><b><s>July 12, 2023</s></b></i> <i><b>July 21, 2023</b></i></li>
<li>Camera ready deadline: <i><b><s>July 19, 2023</s></b></i> <i><b>August 7, 2023</b></i></li>
<li>Workshop date and location: <i><b>September 22, 2023, Torino, Italy</b></i></li>
</ul>
</p>
</div>
</div>
</section><!-- End Speakers Section -->
<!-- ======= Accepted Contributions ======= -->
<section id="contributions" class="section-with-bg">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<h2>Accepted Contributions (Posters)</h2>
<!-- <div class="tab-content row justify-content-center" data-aos="fade-up" data-aos-delay="200"> -->
<!-- Schdule Day 1 -->
<ul id="list">
<li><a href="#schedule">Learning Self-supervised User Representations Using Contextualized Mixture of Experts in Transformers</a> - <span>Surajit Chakrabarty (Amazon)*; Rajat Agarwal (Amazon); Agniva Som (Amazon)</span></li>
<li><a href="#schedule">Representation of Irregularly Sampled Time Series with Generative Language Models for Classification and Transfer Learning : a Case Study in Activities of Daily Living Recognition</a> - <span>Damien Bouchabou (ENSTA-Paris)*; Sao Mai Nguyen (Ensta Paris); Christophe Lohr (IMT Atlantique); Benoit LeDuc (Delta Dore); Ioannis Kanellos (IMT Atlantique)</span></li>
<li><a href="#schedule">Vector Quantized Time Series Generation with Enhanced Sampling Scheme</a> - <span>Daesoo Lee (Norwegian University of Science and Technology (NTNU))*; Erlend Aune (NTNU); Sara Malacarne (Telenor ASA)</span></li>
<li><a href="#schedule">Persistence Initialization: A novel adaptation of the Transformer architecture for Time Series Forecasting</a> - <span>Espen Haugsdal (Norwegian University of Science and Technology )*; Erlend Aune (NTNU); Massimiliano Ruocco (Norwegian University of Science and Technology)</span></li>
<li><a href="#schedule">Maximal Temperature forecasting under spatio-temporal interrelations using Machine Learning </a> - <span>Gerardo Rubino (INRIA)*; Gonzalo Marco (UDELAR); María Eugenia Miranda (UDELAR); Pablo Rodríguez-Bocca (UDELAR)</span>
<li><a href="#schedule">Improving Time Series Forecasting with Mixup Data Augmentation </a> - <span>Yun Zhou (Amazon)*; Liwen You (Amazon); Wenzhen Zhu (Amazon); Panpan Xu (Amazon AWS)</span></li>
<li><a href="#schedule">In the Fast Lane: Enhanced Cycling Performance Prediction with Contrastive Learning</a> - <span>Claus Martinsen (NTNU); Henrik Fauskanger (NTNU); Luca Oggiano (Nablaflow); Massimiliano Ruocco (Norwegian University of Science and Technology)*</span></li>
<li><a href="#schedule">Efficient estimation of prediction intervals in demand forecasting using weighted asymmetric loss</a> - <span>Milo Grillo (Humboldt University of Berlin); Yunpeng Han (Mapal OS); Agnieszka Werpachowska (Mapal OS)*</span></li>
<li><a href="#schedule">Residual Reservoir Computing</a> - <span>Andrea Ceni (University of Pisa); Claudio Gallicchio (University of Pisa)*</span></li>
<li><a href="#schedule">Probabilistic Demand Forecasting with Graph Neural Networks</a> - <span>Nikita Kozodoi (Amazon Web Services)*; Elizaveta Zinovyeva (Amazon Web Services); Simon Valentin (University of Edinburgh); João Pereira (adidas); Rodrigo Agundez (adidas)</span></li>
<li><a href="#schedule">Echoes of Conflict: Quantifying Redundancy in Casualty Time Series</a> - <span>Thomas Chadefaux (Trinity College Dublin); Thomas SCHINCARIOL (Trinity College Dublin)*</span></li>
</ul>
</div>
</div>
</section><!-- End Accepted contributions -->
<!-- ======= Schedule Section ======= -->
<section id="schedule" class="section-with-bg">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<h2>Event Schedule</h2>
<!-- <div class="tab-content row justify-content-center" data-aos="fade-up" data-aos-delay="200"> -->
<div class="tab-content row justify-content-center">
<!-- Schdule Day 1 -->
<div role="tabpanel" class="col-lg-9 tab-pane fade show active" id="morning">
<div class="row schedule-item">
<div class="col-md-2"><time>9:00 - 11.00</time></div>
<div class="col-md-10">
<h4><a href="https://sites.google.com/view/reservoir-computing-tf/activities/ecmlpkdd-2023-tutorial-on-reservoir-computing">Tutorial on Sustainable Deep Learning for Time-series: Reservoir Computing</a><span></span></h4>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>11:00 - 11:30</time></div>
<div class="col-md-10">
<h4>Coffee Break</h4>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>11:30</time></div>
<div class="col-md-10">
<h4>Opening</h4>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>11:30 - 12:00</time></div>
<div class="col-md-10">
<h4>Session 1 </h4>
<h4><a href="#schedule">Learning Self-supervised User Representations Using Contextualized Mixture of Experts in Transformers</a> - <span>CSurajit Chakrabarty (Amazon)*; Rajat Agarwal (Amazon); Agniva Som (Amazon)</span></h4>
<h4><a href="#schedule">Representation of Irregularly Sampled Time Series with Generative Language Models for Classification and Transfer Learning : a Case Study in Activities of Daily Living Recognition</a> - <span>Damien Bouchabou (ENSTA-Paris)*; Sao Mai Nguyen (Ensta Paris); Christophe Lohr (IMT Atlantique); Benoit LeDuc (Delta Dore); Ioannis Kanellos (IMT Atlantique)</span></h4>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>12:00 - 12:30</time></div>
<div class="col-md-10">
<h4>Poster Session</h4>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>12:30 - 13:00</time></div>
<div class="col-md-10">
<h4>Session 2 </h4>
<h4><a href="#schedule">Improving Time Series Forecasting with Mixup Data Augmentation</a> - <span>Yun Zhou (Amazon)*; Liwen You (Amazon); Wenzhen Zhu (Amazon); Panpan Xu (Amazon AWS)</span></h4>
<h4><a href="#schedule">Probabilistic Demand Forecasting with Graph Neural Networks</a> - <span>Nikita Kozodoi (Amazon Web Services)*; Elizaveta Zinovyeva (Amazon Web Services); Simon Valentin (University of Edinburgh); João Pereira (adidas); Rodrigo Agundez (adidas)</span></h4>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>12:30</time></div>
<div class="col-md-10">
<h4>Concluding remarks</h4>
</div>
</div>
</div>
<!-- End Schdule Day 1 -->
<!-- Schdule Day 2 -->
<!--<div role="tabpanel" class="col-lg-9 tab-pane fade" id="afternoon">
<div class="row schedule-item">
<div class="col-md-2"><time>10:00 AM</time></div>
<div class="col-md-10">
<div class="speaker">
<img src="assets/img/speakers/1.jpg" alt="Brenden Legros">
</div>
<h4>Libero corrupti explicabo itaque. <span>Brenden Legros</span></h4>
<p>Facere provident incidunt quos voluptas.</p>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>11:00 AM</time></div>
<div class="col-md-10">
<div class="speaker">
<img src="assets/img/speakers/2.jpg" alt="Hubert Hirthe">
</div>
<h4>Et voluptatem iusto dicta nobis. <span>Hubert Hirthe</span></h4>
<p>Maiores dignissimos neque qui cum accusantium ut sit sint inventore.</p>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>12:00 AM</time></div>
<div class="col-md-10">
<div class="speaker">
<img src="assets/img/speakers/3.jpg" alt="Cole Emmerich">
</div>
<h4>Explicabo et rerum quis et ut ea. <span>Cole Emmerich</span></h4>
<p>Veniam accusantium laborum nihil eos eaque accusantium aspernatur.</p>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>02:00 PM</time></div>
<div class="col-md-10">
<div class="speaker">
<img src="assets/img/speakers/4.jpg" alt="Jack Christiansen">
</div>
<h4>Qui non qui vel amet culpa sequi. <span>Jack Christiansen</span></h4>
<p>Nam ex distinctio voluptatem doloremque suscipit iusto.</p>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>03:00 PM</time></div>
<div class="col-md-10">
<div class="speaker">
<img src="assets/img/speakers/5.jpg" alt="Alejandrin Littel">
</div>
<h4>Quos ratione neque expedita asperiores. <span>Alejandrin Littel</span></h4>
<p>Eligendi quo eveniet est nobis et ad temporibus odio quo.</p>
</div>
</div>
<div class="row schedule-item">
<div class="col-md-2"><time>04:00 PM</time></div>
<div class="col-md-10">
<div class="speaker">
<img src="assets/img/speakers/6.jpg" alt="Willow Trantow">
</div>
<h4>Quo qui praesentium nesciunt <span>Willow Trantow</span></h4>
<p>Voluptatem et alias dolorum est aut sit enim neque veritatis.</p>
</div>
</div>
</div>-->
<!-- End Schdule Day 2 -->
</div>
</div>
</section><!-- End Schedule Section -->
<!-- ======= Supporters Section ======= -->
<section id="supporters" class="section-with-bg">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<h2>Partners</h2>
</div>
<!-- <div class="row no-gutters supporters-wrap clearfix" data-aos="zoom-in" data-aos-delay="100"> -->
<div class="row no-gutters supporters-wrap clearfix">
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/ntnu_logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/sintef_logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/nfr_logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/telenor_logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/nail_logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/university-of-pisa-logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/refinitiv-logo.png" class="img-fluid" alt="">
</div>
</div>
<div class="col-lg-3 col-md-4 col-xs-6">
<div class="supporter-logo">
<img src="assets/img/supporters/bi-logo.png" class="img-fluid" alt="">
</div>
</div>
</div>
</div>
</section><!-- End Sponsors Section -->
<!-- ======= Contact Section ======= -->
<section id="contact" class="section-bg">
<!-- <div class="container" data-aos="fade-up"> -->
<div class="container">
<div class="section-header">
<h2>Contact Us</h2>
<p><a href="mailto:[email protected]">[email protected]</a></p>
</div>
</div>
</section><!-- End Contact Section -->
</main><!-- End #main -->
<a href="#" class="back-to-top d-flex align-items-center justify-content-center"><i
class="bi bi-arrow-up-short"></i></a>
<!-- Vendor JS Files -->
<script src="assets/vendor/aos/aos.js"></script>
<script src="assets/vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<script src="assets/vendor/glightbox/js/glightbox.min.js"></script>
<script src="assets/vendor/php-email-form/validate.js"></script>
<script src="assets/vendor/swiper/swiper-bundle.min.js"></script>
<!-- Template Main JS File -->
<script src="assets/js/main.js"></script>
</body>
</html>