-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation_modeling.py
153 lines (115 loc) · 4.67 KB
/
evaluation_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import datetime
import math
import os
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import data
import utils
from load_model import load_model
from losses import get_loss_fn
import torch.nn as nn
class WrapperDDP(nn.parallel.DistributedDataParallel):
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.module, name)
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
def _run(rank, args):
if rank == 0:
logger = utils.get_logger(os.path.join(args.work_dir, f"zero_shot_on_{args.valid_dataset}_{args.loss_type}_logs"))
def mprint(msg):
if rank == 0:
logger.info(msg)
torch.cuda.set_device(rank)
device = torch.device(f"cuda:{rank}" if torch.cuda.is_available() else "cpu")
mprint("================================")
if device.type == "cuda":
mprint("Found {} CUDA devices.".format(torch.cuda.device_count()))
for i in range(torch.cuda.device_count()):
props = torch.cuda.get_device_properties(i)
mprint(
"{} \t Memory: {:.2f}GB".format(
props.name, props.total_memory / (1024 ** 3)
)
)
else:
mprint("WARNING: Using device {}".format(device))
mprint(f"Found {os.cpu_count()} total number of CPUs.")
mprint("================================")
args_dict = vars(args)
for arg_name, arg_value in args_dict.items():
mprint(f"{arg_name}: {arg_value}")
model, noise = load_model(args.model_path, device)
token_dim = model.config.tokens + 1
model = WrapperDDP(model, device_ids=[rank], static_graph=True)
noise = DDP(noise, device_ids=[rank], static_graph=True)
dataloader = data.get_valid_dataloaders(args)
eval_iter = iter(dataloader)
loss_fn = get_loss_fn(noise,token_dim, train=False, loss_type= args.loss_type)
total_loss = 0
with torch.no_grad():
batch_num = 0
for batch in eval_iter:
if args.valid_dataset != "text8":
batch = batch['input_ids'].to(device)
else:
batch = batch.to(device)
cur_loss = 0
for _ in range(args.monte_carlo_timesteps):
loss = loss_fn(model, batch).mean()
cur_loss += loss
cur_loss /= args.monte_carlo_timesteps
total_loss += cur_loss
batch_num += 1
dist.all_reduce(total_loss)
total_loss /= args.ngpus
total_loss /= batch_num
ppl = math.exp(total_loss / args.length)
mprint("================================")
mprint(f"Evaluation PPL: {ppl}")
mprint("================================\n\n")
def run(rank, args, port):
def setup(rank, world_size, port):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(port)
# Initialize the process group
dist.init_process_group(
"nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(minutes=30)
)
def cleanup():
dist.destroy_process_group()
try:
setup(rank, args.ngpus, port)
_run(rank, args)
finally:
cleanup()
def main():
parser = argparse.ArgumentParser(description="Evaluation On RADD models")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--cache_dir", type=str, default="data")
parser.add_argument("--length", type=int, default=1024)
parser.add_argument("--model_path", type=str, default='JingyangOu/radd-lambda-dce')
parser.add_argument("--monte_carlo_timesteps", type=int, default=1024)
parser.add_argument("--ngpus", type=int, default=4)
parser.add_argument("--valid_dataset", type=str, default="ptb")
parser.add_argument("--work_dir", type=str, default="./logs/radd-lambda-dce")
parser.add_argument("--loss_type", type=str, default="lambda_DCE")
args = parser.parse_args()
if args.loss_type == "ar_forward" or args.loss_type == "ar_backward" or args.loss_type == "ar_random":
assert args.monte_carlo_timesteps == 1
os.makedirs(args.work_dir, exist_ok=True)
port = int(np.random.randint(10000, 20000))
logger = utils.get_logger(os.path.join(args.work_dir, f"zero_shot_on_{args.valid_dataset}_{args.loss_type}_logs"))
try:
mp.set_start_method("forkserver")
mp.spawn(run, args=(args, port), nprocs=args.ngpus, join=True)
except Exception as e:
logger.critical(e, exc_info=True)
if __name__ == "__main__":
main()