-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcentralized_experiments.py
101 lines (96 loc) · 3.64 KB
/
centralized_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from data import importer
from learning.predict import train_or_load_MLP, onehot
import learning.nn
import numpy as np
for dataset in ["citeseer", "cora", "pubmed"]:
classifier = learning.nn.LR
graph, features, labels, training, validation, test = importer.load(
dataset, verbose=False
)
num_classes = len(set(labels.values()))
num_features = len(list(features.values())[0])
onehot_labels = {u: onehot(labels[u], num_classes) for u in graph}
empty_label = onehot(None, num_classes)
training = set(training)
validation = set(validation)
training_labels = {
u: onehot_labels[u] if u in training or u in validation else empty_label
for u in graph
}
# print(len(training), len(validation), len(test))
is_training = {u: False for u in graph}
for u in training:
is_training[u] = True
for u in validation:
is_training[u] = True
if classifier is not None:
pretrained = train_or_load_MLP(
dataset,
features,
onehot_labels,
num_classes,
training,
validation,
test,
classifier=classifier,
)
for u, v in list(graph.edges()):
graph.add_edge(v, u)
test_labels = {u: labels[u] for u in test}
predictions = (
{u: pretrained(features[u]) for u in graph}
if classifier is not None
else {u: training_labels[u] for u in graph}
)
errors = {
u: training_labels[u] - predictions[u] if is_training[u] else training_labels[u]
for u in graph
}
diffused_errors = errors
for round in range(200):
next_diffused_errors = {u: 0 for u in graph}
for u in graph:
if is_training[u]:
next_diffused_errors[u] = errors[u]
else:
for v in graph.neighbors(u):
next_diffused_errors[u] = next_diffused_errors[u] + diffused_errors[
v
] / (graph.out_degree(v) + 1)
next_diffused_errors[u] = next_diffused_errors[u] + diffused_errors[
u
] / (graph.out_degree(u) + 1)
diffused_errors = next_diffused_errors
# sigma = 0
# for u in training:
# sigma = sigma + np.sum(np.abs(diffused_errors[u])) / len(training)
# combined_predictions = {u: sigma*diffused_errors[u]/(np.sum(np.abs(diffused_errors[u]))+1.E-8) + predictions[u] if not is_training[u] else onehot_labels[u] for u in graph}
combined_predictions = {
u: (
diffused_errors[u] + predictions[u]
if not is_training[u]
else onehot_labels[u]
)
for u in graph
}
diffused_predictions = combined_predictions
for round in range(200):
next_diffused_predictions = {u: 0 for u in graph}
for u in graph:
for v in graph.neighbors(u):
next_diffused_predictions[u] = next_diffused_predictions[
u
] + diffused_predictions[v] / ((graph.out_degree(v) + 1) ** 0.5)
next_diffused_predictions[u] = next_diffused_predictions[
u
] + diffused_predictions[u] / ((graph.out_degree(u) + 1) ** 0.5)
next_diffused_predictions[u] = (
next_diffused_predictions[u] / ((graph.out_degree(u) + 1) ** 0.5) * 0.9
+ 0.1 * combined_predictions[u]
)
diffused_predictions = next_diffused_predictions
accuracy = sum(
1.0 if np.argmax(diffused_predictions[u]) == label else 0
for u, label in test_labels.items()
) / len(test_labels)
print(dataset, accuracy)