-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov8_detect.py
49 lines (45 loc) · 1.61 KB
/
yolov8_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
from ultralytics import YOLO
import torch
import os
class Detector:
def load_model(self,model_path):
if model_path:
try:
model = YOLO(os.path.abspath(".")+"/"+model_path)
return model
except:
print("Model Name is Wrong!!")
return None
def __init__(self, model_path):
self.model = self.load_model(model_path)
self.crop_type_match = {
0: [0, 1, 2],
1: [3, 4, 5],
2: [6, 7, 8],
3: [9, 10, 11]
}
self.empty_dict = {
"responseCode": 1,
"diagnoseReults": []
}
def getMyDiagnosis(self,crop_type, boxes):
return list(filter(lambda box: True if int(box.cls) in self.crop_type_match[crop_type] and float(box.conf) > 0.5 else False, boxes))
def getTop3Diagnosis(self,boxes):
return list(map(lambda box:{
"diseaseCode":int(box.cls),
"accuracy":float(box.conf),
"bbox":[float(v) for v in box.xyxyn[0].tolist()]
},sorted(boxes,key=lambda x: float(x.conf), reverse = True)[:3])
)
def __call__(self,crop_type,img_path):
result = self.model([img_path])[0]
boxes = list(result.boxes)
if not boxes: return self.empty_dict
boxes = self.getMyDiagnosis(crop_type,boxes)
if not boxes:
return self.empty_dict
return {
"responseCode" : 0,
"diagnoseResults": self.getTop3Diagnosis(boxes)
}