-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
372 lines (313 loc) · 10.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import torch
import numpy as np
import transforms3d as t3d
import torch.nn.functional as F
from opendr.camera import ProjectPoints
from opendr.renderer import ColoredRenderer
from opendr.lighting import LambertianPointLight
import common
def normalize_quaternion(quaternion,eps=1e-12):
return F.normalize(quaternion, p=2, dim=-1, eps=eps)
def my_atan2(y, x):
pi = torch.from_numpy(np.array([np.pi])).to(y.device, y.dtype)
ans = torch.atan(y/x)
ans = torch.where(((y>0).float()*(x<0).float()).bool(), ans+pi, ans)
ans = torch.where(((y<0).float()*(x<0).float()).bool(), ans+pi, ans)
return ans
def quaternion_to_angle_axis(quaternion):
q1 = quaternion[..., 1]
q2 = quaternion[..., 2]
q3 = quaternion[..., 3]
sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3
sin_theta = torch.sqrt(sin_squared_theta)
cos_theta = quaternion[..., 0]
two_theta = 2.0 * torch.where(
cos_theta < 0.0, my_atan2(-sin_theta, -cos_theta),
my_atan2(sin_theta, cos_theta))
k_pos = two_theta / sin_theta
k_neg = 2.0 * torch.ones_like(sin_theta)
k = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis = quaternion[...,1:] * k.unsqueeze(2)
return angle_axis
def hm_to_uvd(hm3d):
b, c, w, h = hm3d.size()
hm2d = hm3d[:,:21,...]
depth = hm3d[:,21:,...]
uv = hm_to_kp2d(hm2d)/w
hm2d = hm2d.view(b,1,c//2,-1)
depth = depth.view(b,1,c//2,-1)
hm2d = hm2d / torch.sum(hm2d,-1,keepdim=True)
d = torch.sum(depth * hm2d,-1).permute(0,2,1)
joint = torch.cat((uv,d),dim=-1)
return joint
def hm_to_kp2d(hm):
b, c, w, h = hm.size()
hm = hm.view(b,c,-1)
hm = hm/torch.sum(hm,-1,keepdim=True)
coord_map_x = torch.arange(0,w).view(-1,1).repeat(1,h).to(hm.device)
coord_map_y = torch.arange(0,h).view(1,-1).repeat(w,1).to(hm.device)
coord_map_x = coord_map_x.view(1,1,-1).float()
coord_map_y = coord_map_y.view(1,1,-1).float()
x = torch.sum(coord_map_x * hm,-1,keepdim=True)
y = torch.sum(coord_map_y * hm,-1,keepdim=True)
kp_2d = torch.cat((y,x),dim=-1)
return kp_2d
def uvd2xyz(uvd, joint_root, joint_bone, intr=None, trans=None, scale=None, inp_res=256, mode='persp'):
bs = uvd.shape[0]
uv = uvd[:, :, :2] * inp_res # 0~256
depth = ( uvd[:, :, 2] * common.DEPTH_RANGE ) + common.DEPTH_MIN
root_depth = joint_root[:, -1].unsqueeze(1) #(B, 1)
z = depth * joint_bone.expand_as(uvd[:, :, 2]) + \
root_depth.expand_as(uvd[:, :, 2]) # B x M
'''2. uvd->xyz'''
camparam = torch.cat((intr[:, 0:1, 0],intr[:, 1:2, 1],intr[:, 0:1, 2],intr[:, 1:2, 2]),1)
camparam = camparam.unsqueeze(1).repeat(1, uvd.size(1), 1) # B x M x 4
xy = ((uv - camparam[:, :, 2:4]) / camparam[:, :, :2]) * \
z.unsqueeze(2).expand_as(uv) # B x M x 2
return torch.cat((xy, z.unsqueeze(2)), -1) # B x M x 3
class MeshRenderer(object):
def __init__(self,
mesh_faces,
img_size=256,
flength=500.): #822.79041): #
self.faces = mesh_faces
self.w = img_size
self.h = img_size
self.flength = flength
def __call__(self,
verts,
cam_intrinsics,
img=None,
do_alpha=False,
far=None,
near=None,
color_id=0,
img_size=None,
R=None):
"""
cam is 3D [fx, fy, px, py]
"""
if img is not None:
h, w = img.shape[:2]
elif img_size is not None:
h = img_size[0]
w = img_size[1]
else:
h = self.h
w = self.w
dist = np.zeros(5)
dist = dist.flatten()
M = np.eye(4)
# get R, t from M (has to be world2cam)
if R is None:
R = M[:3, :3]
ax, angle = t3d.axangles.mat2axangle(R)
rt = ax*angle
rt = rt.flatten()
t = M[:3, 3]
if cam_intrinsics is None:
cam_intrinsics = np.array([
[500, 0, 128],
[0, 500, 128],
[0, 0, 1]]
)
pp = np.array([cam_intrinsics[0, 2], cam_intrinsics[1, 2]])
f = np.array([cam_intrinsics[0, 0], cam_intrinsics[1, 1]])
use_cam = ProjectPoints(
rt=rt,
t=t, # camera translation
f=f, # focal lengths
c=pp, # camera center (principal point)
k=dist
) # OpenCv distortion params
if near is None:
near = np.maximum(np.min(verts[:, 2]) - 25, 0.1)
if far is None:
far = np.maximum(np.max(verts[:, 2]) + 25, 25)
imtmp = render_model(
verts,
self.faces,
w,
h,
use_cam,
do_alpha=do_alpha,
img=img,
far=far,
near=near,
color_id=color_id)
return (imtmp * 255).astype('uint8')
def rotated(self,
verts,
deg,
cam=None,
axis='y',
img=None,
do_alpha=True,
far=None,
near=None,
color_id=0,
img_size=None):
import math
if axis == 'y':
around = cv2.Rodrigues(np.array([0, math.radians(deg), 0]))[0]
elif axis == 'x':
around = cv2.Rodrigues(np.array([math.radians(deg), 0, 0]))[0]
else:
around = cv2.Rodrigues(np.array([0, 0, math.radians(deg)]))[0]
center = verts.mean(axis=0)
new_v = np.dot((verts - center), around) + center
return self.__call__(
new_v,
cam,
img=img,
do_alpha=do_alpha,
far=far,
near=near,
img_size=img_size,
color_id=color_id)
def simple_renderer(rn,
verts,
faces,
yrot=np.radians(120),
color=common.colors['light_pink']):
# Rendered model color
rn.set(v=verts, f=faces, vc=color, bgcolor=np.ones(3))
albedo = rn.vc
# Construct Back Light (on back right corner)
rn.vc = LambertianPointLight(
f=rn.f,
v=rn.v,
num_verts=len(rn.v),
light_pos=_rotateY(np.array([-200, -100, -100]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Left Light
rn.vc += LambertianPointLight(
f=rn.f,
v=rn.v,
num_verts=len(rn.v),
light_pos=_rotateY(np.array([800, 10, 300]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Right Light
rn.vc += LambertianPointLight(
f=rn.f,
v=rn.v,
num_verts=len(rn.v),
light_pos=_rotateY(np.array([-500, 500, 1000]), yrot),
vc=albedo,
light_color=np.array([.7, .7, .7]))
return rn.r
def _create_renderer(w=640,
h=480,
rt=np.zeros(3),
t=np.zeros(3),
f=None,
c=None,
k=None,
near=.5,
far=10.):
f = np.array([w, w]) / 2. if f is None else f
c = np.array([w, h]) / 2. if c is None else c
k = np.zeros(5) if k is None else k
rn = ColoredRenderer()
rn.camera = ProjectPoints(rt=rt, t=t, f=f, c=c, k=k)
rn.frustum = {'near': near, 'far': far, 'height': h, 'width': w}
return rn
def _rotateY(points, angle):
"""Rotate the points by a specified angle."""
ry = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.],
[-np.sin(angle), 0., np.cos(angle)]])
return np.dot(points, ry)
def render_model(verts,
faces,
w,
h,
cam,
near=0.5,
far=25,
img=None,
do_alpha=False,
color_id=None):
rn = _create_renderer(
w=w, h=h, near=near, far=far, rt=cam.rt, t=cam.t, f=cam.f, c=cam.c)
# Uses img as background, otherwise white background.
if img is not None:
rn.background_image = img / 255. if img.max() > 1 else img
if color_id is None:
color = common.colors['light_blue']
else:
color_list = list(common.colors.values())
color = color_list[color_id % len(color_list)]
imtmp = simple_renderer(rn, verts, faces, color=color)
return imtmp
class OpendrRenderer(object):
def __init__(self,
img_size=224,
mesh_color=np.array([0.5, 0.5, 0.5]),):
self.w = img_size
self.h = img_size
self.color = mesh_color
self.img_size = img_size
self.flength = 500.
def render(self, verts, faces, bg_img):
verts = verts.copy()
faces = faces.copy()
input_size = 500
f = 5
verts[:, 0] = (verts[:, 0] - input_size) / input_size
verts[:, 1] = (verts[:, 1] - input_size) / input_size
verts[:, 2] /= (5 * 112)
verts[:, 2] += f
cam_for_render = np.array([f, 1, 1]) * input_size
rend_img = self.__call__(
img=bg_img, cam=cam_for_render,
verts=verts, faces=faces, color=self.color)
return rend_img
def __call__(self,
verts,
faces,
cam=None,
img=None,
do_alpha=False,
far=None,
near=None,
color = np.array([0, 0, 255]),
img_size=None):
"""
cam is 3D [f, px, py]
"""
if img is not None:
h, w = img.shape[:2]
elif img_size is not None:
h = img_size[0]
w = img_size[1]
else:
h = self.h
w = self.w
if cam is None:
cam = [self.flength, w / 2., h / 2.]
use_cam = ProjectPoints(
f=cam[0] * np.ones(2),
rt=np.zeros(3),
t=np.zeros(3),
k=np.zeros(5),
c=cam[1:3])
if near is None:
near = np.maximum(np.min(verts[:, 2]) - 25, 0.1)
if far is None:
far = np.maximum(np.max(verts[:, 2]) + 25, 25)
return_value = render_model(
verts,
faces,
w,
h,
use_cam,
do_alpha=do_alpha,
img=img,
far=far,
near=near,
color_id=0)
imtmp = return_value
image = (imtmp * 255).astype('uint8')
return image