-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathapp_with_tracker.py
311 lines (272 loc) · 10.1 KB
/
app_with_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import cv2
import numpy as np
import pygame
import torch
import time
import argparse
import torch.backends.cudnn as cudnn
import pyrealsense2 as rs
import jax.numpy as npj
import open3d
from jax import grad, jit, vmap
from jax.experimental import optimizers
from torchvision.transforms import functional
import pickle
from manolayer import ManoLayer
from model import HandNet
from checkpoints import CheckpointIO
import utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
mano_layer = ManoLayer(center_idx=9, side="right", mano_root=".", use_pca=False, flat_hand_mean=True,)
mano_layer = jit(mano_layer)
class RealSenseCapture:
def __init__(self):
self.pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
profile = self.pipeline.start(config)
def read(self):
frames = self.pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
color_image = np.asanyarray(color_frame.get_data())
return np.flip(color_image, -1).copy()
@jit
def hm_to_kp2d(hm):
b, c, w, h = hm.shape
hm = hm.reshape(b,c,-1)
hm = hm/npj.sum(hm,-1,keepdims=True)
coord_map_x = npj.tile(npj.arange(0,w).reshape(-1,1), (1,h))
coord_map_y = npj.tile(npj.arange(0,h).reshape(1,-1), (w,1))
coord_map_x = coord_map_x.reshape(1,1,-1)
coord_map_y = coord_map_y.reshape(1,1,-1)
x = npj.sum(coord_map_x * hm,-1,keepdims=True)
y = npj.sum(coord_map_y * hm,-1,keepdims=True)
kp_2d = npj.concatenate((y,x),axis=-1)
return kp_2d
@jit
def reinit_root(joint_root,kp2d,camparam):
uv = kp2d[0,9,:]
xy = joint_root[...,:2]
z = joint_root[...,2]
joint_root = ((uv - camparam[0, 0, 2:4])/camparam[0, 0, :2]) * z
joint_root = npj.concatenate((joint_root,z))
return joint_root
@jit
def reinit_scale(joint,kp2d,camparam,bone,joint_root):
z0 = joint_root[2:]
xy0 = joint_root[:2]
xy = joint[:,:2] * bone
z = joint[:,2:] * bone
kp2d = kp2d[0]
s1 = npj.sum(((kp2d - camparam[0, 0, 2:4])*xy)/(camparam[0, 0, :2]*(z0+z)) - (xy0*xy)/((z0+z)**2))
s2 = npj.sum((xy**2)/((z0+z)**2))
s = s1/s2
bone = bone * npj.max(npj.array([s,0.9]))
return bone
@jit
def geo(joint):
idx_a = npj.array([1,5,9,13,17])
idx_b = npj.array([2,6,10,14,18])
idx_c = npj.array([3,7,11,15,19])
idx_d = npj.array([4,8,12,16,20])
p_a = joint[:,idx_a,:]
p_b = joint[:,idx_b,:]
p_c = joint[:,idx_c,:]
p_d = joint[:,idx_d,:]
v_ab = p_a - p_b #(B, 5, 3)
v_bc = p_b - p_c #(B, 5, 3)
v_cd = p_c - p_d #(B, 5, 3)
loss_1 = npj.abs(npj.sum(npj.cross(v_ab, v_bc, -1) * v_cd, -1)).mean()
loss_2 = - npj.clip(npj.sum(npj.cross(v_ab, v_bc, -1) * npj.cross(v_bc, v_cd, -1)), -npj.inf, 0).mean()
loss = 10000*loss_1 + 100000*loss_2
return loss
@jit
def residuals(input_list,so3_init,beta_init,joint_root,kp2d,camparam):
so3 = input_list['so3']
beta = input_list['beta']
bone = input_list['bone']
so3 = so3[npj.newaxis,...]
beta = beta[npj.newaxis,...]
_, joint_mano, _ = mano_layer(
pose_coeffs = so3,
betas = beta
)
bone_pred = npj.linalg.norm(joint_mano[:, 0, :] - joint_mano[:, 9, :], axis=1, keepdims=True)
bone_pred = bone_pred[:,npj.newaxis,...]
reg = ((so3 - so3_init)**2)
reg_beta = ((beta - beta_init)**2)
joint_mano = joint_mano / bone_pred
joint_mano = joint_mano * bone + joint_root
geo_reg = geo(joint_mano)
xy = (joint_mano[...,:2]/joint_mano[...,2:])
uv = (xy * camparam[:, :, :2] ) + camparam[:, :, 2:4]
errkp = ((uv - kp2d)**2)
err = 0.01*reg.mean() + 0.01*reg_beta.mean() + 1*errkp.mean() + 100*geo_reg.mean()
return err
@jit
def mano_de(params,joint_root,bone):
so3 = params['so3']
beta = params['beta']
verts_mano, joint_mano, _ = mano_layer(
pose_coeffs = so3[npj.newaxis,...],
betas = beta[npj.newaxis,...]
)
bone_pred = npj.linalg.norm(joint_mano[:, 0, :] - joint_mano[:, 9, :],axis=1, keepdims=True)
bone_pred = bone_pred[:,npj.newaxis,...]
verts_mano = verts_mano / bone_pred
verts_mano = verts_mano * bone + joint_root
v = verts_mano[0]
return v
@jit
def mano_de_j(so3, beta):
_, joint_mano, _ = mano_layer(
pose_coeffs = so3[npj.newaxis,...],
betas = beta[npj.newaxis,...]
)
bone_pred = npj.linalg.norm(joint_mano[:, 0, :] - joint_mano[:, 9, :],axis=1, keepdims=True)
bone_pred = bone_pred[:,npj.newaxis,...]
joint_mano = joint_mano / bone_pred
j = joint_mano[0]
return j
def live_application(capture,arg):
pygame.init()
display = pygame.display.set_mode((640, 480))
pygame.display.set_caption('Real Time Hand Recon')
dd = pickle.load(open("MANO_RIGHT.pkl", 'rb'), encoding='latin1')
face = np.array(dd['f'])
model = HandNet()
model = model.to(device)
checkpoint_io = CheckpointIO('.', model=model)
load_dict = checkpoint_io.load('checkpoints/model.pt')
model.eval()
renderer = utils.MeshRenderer(face, img_size=[640,480])
o_intr = torch.from_numpy(np.array([
[arg.fx, 0.0, arg.cx],
[0.0, arg.fy, arg.cy],
[0.0, 0.0, 1.0],
], dtype=np.float32)).unsqueeze(0).numpy()
o_camparam = np.zeros((4))
o_camparam[0] = o_intr[0, 0, 0]
o_camparam[1] = o_intr[0, 1, 1]
o_camparam[2] = o_intr[0, 0, 2]
o_camparam[3] = o_intr[0, 1, 2]
gr = jit(grad(residuals))
lr = 0.03
opt_init, opt_update, get_params = optimizers.adam(lr, b1=0.5, b2=0.5)
opt_init = jit(opt_init)
opt_update = jit(opt_update)
get_params = jit(get_params)
x_reg = np.ones((10,))*240
y_reg = np.ones((10,))*240
s_reg = np.ones((10,))*240
weight = np.array([0,0,0,0,0,0,0,0.1,0.2,0.7])
i = 0
x = 240
y = 320
scale = 256
with torch.no_grad():
while True:
i = i + 1
img = capture.read()
frame = img.copy()
if img is None:
continue
vmin = max(0, y - scale//2)
vmin_p = max(scale//2 - y, 0)
umin = max(0, x - scale//2)
umin_p = max(scale//2 - x, 0)
vmax = min(640, y + scale//2)
vmax_p = max(scale//2 + y - 640, 0)
umax = min(480, x + scale//2)
umax_p = max(scale//2 + x - 480, 0)
img = img[int(umin):int(umax),int(vmin):int(vmax),:]
img = cv2.copyMakeBorder(img,int(umin_p),int(umax_p),int(vmin_p),int(vmax_p),cv2.BORDER_CONSTANT,value=[255,255,255])
cx = arg.cx - y + scale//2
cy = arg.cy - x + scale//2
cx = (cx * 256) / scale
cy = (cy * 256) / scale
fx = (arg.fx * 256) / scale
fy = (arg.fy * 256) / scale
intr = torch.from_numpy(np.array([
[fx, 0.0, cx],
[0.0, fy, cy],
[0.0, 0.0, 1.0],
], dtype=np.float32)).unsqueeze(0).to(device)
_intr = intr.cpu().numpy()
camparam = np.zeros((1, 21, 4))
camparam[:, :, 0] = _intr[:, 0, 0]
camparam[:, :, 1] = _intr[:, 1, 1]
camparam[:, :, 2] = _intr[:, 0, 2]
camparam[:, :, 3] = _intr[:, 1, 2]
img = cv2.resize(img, (256, 256),cv2.INTER_LINEAR)
img = functional.to_tensor(img).float()
img = functional.normalize(img, [0.5, 0.5, 0.5], [1, 1, 1])
img = img.unsqueeze(0).to(device)
hm, so3, beta, joint_root, bone = model(img,intr)
kp2d = hm_to_kp2d(hm.detach().cpu().numpy())*4
so3 = so3[0].detach().cpu().float().numpy()
beta = beta[0].detach().cpu().float().numpy()
bone = bone[0].detach().cpu().numpy()
joint_root = joint_root[0].detach().cpu().numpy()
so3 = npj.array(so3)
beta = npj.array(beta)
bone = npj.array(bone)
joint_root = npj.array(joint_root)
kp2d = npj.array(kp2d)
so3_init = so3
beta_init = beta
joint_root = reinit_root(joint_root,kp2d, camparam)
joint = mano_de_j(so3, beta)
bone = reinit_scale(joint,kp2d,camparam,bone,joint_root)
params = {'so3':so3, 'beta':beta, 'bone':bone}
opt_state = opt_init(params)
n = 0
while n < 20:
n = n + 1
params = get_params(opt_state)
grads = gr(params,so3_init,beta_init,joint_root,kp2d,camparam)
opt_state = opt_update(n, grads, opt_state)
params = get_params(opt_state)
v = mano_de(params,joint_root,bone)
kp2d = np.array(kp2d[0])
x = x + ((kp2d[9,1] - 128)*scale)/256
y = y + ((kp2d[9,0] - 128)*scale)/256
scale = max(max(kp2d[:,0].max() - kp2d[:,0].min(), kp2d[:,1].max() - kp2d[:,1].min()) * 2, 80)
x_reg[:9] = x_reg[1:]
x_reg[-1] = x
y_reg[:9] = y_reg[1:]
y_reg[-1] = y
s_reg[:9] = s_reg[1:]
s_reg[-1] = scale
x = (x_reg * weight).sum()
y = (y_reg * weight).sum()
scale = (s_reg * weight).sum()
frame = renderer(v,o_intr[0],frame)
frame = cv2.rectangle(frame, (int(vmin), int(umin)), (int(vmax), int(umax)), (255, 255, 255), thickness=5)
display.blit(
pygame.surfarray.make_surface(np.transpose(np.flip(frame,1), (1, 0, 2))),(0, 0))
pygame.display.update()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--cx',
type=float,
default=321.2842102050781,
)
parser.add_argument(
'--cy',
type=float,
default=235.8609161376953,
)
parser.add_argument(
'--fx',
type=float,
default=612.0206298828125,
)
parser.add_argument(
'--fy',
type=float,
default=612.2821044921875,
)
live_application(RealSenseCapture(),parser.parse_args())