-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
94 lines (75 loc) · 4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import os.path as osp
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
import logging
import argparse
from argparse import Namespace
from datetime import datetime
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from method import METHODS
from data import DATASETS, build_calib_loader
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--method', type=str, required=True,
choices=list(METHODS.keys()),
help=' '.join(['Supported pruning methods:'] + list(METHODS.keys())))
parser.add_argument('--r', type=int, default=None,
help='Number of experts to preserve')
parser.add_argument('--calib_set', type=str, required=True,
choices=list(DATASETS.keys()),
help=' '.join(['Supported calibration datasets:'] + list(DATASETS.keys())))
parser.add_argument('--model_path', type=str, default=None, required=True,
help='Path to model to prune')
parser.add_argument('--output_path', type=str, default='./output',
help='Output path (pruned model, pruning results, etc.)')
parser.add_argument('--max_block_size', type=int, default=2048,
help='Maximal sequence length of each sample in calibration set')
parser.add_argument('--n_blocks_for_stat', type=int, default=128,
help='Number of sequences in calibration set. If set to 0 or negative, the whole dataset will be used')
parser.add_argument('--batch_size', type=int, default=8,
help='Batch size for model inference')
parser.add_argument('--num_workers', type=int, default=4,
help='Number of workers in dataloader')
parser.add_argument('--seed', type=int, default=42,
help='Random seed for reproduction')
parser.add_argument('--use_flash_attention_2', action='store_true',
help='If set, Flash Attention 2 will be used')
return parser.parse_args()
def main(args: Namespace):
logger.info(f'Arguments: {args}')
if args.model_path.endswith('/'):
args.model_path = args.model_path[:-1]
model_name = args.model_path.split('/')[-1]
if args.method.endswith('_pruning'):
assert args.r is not None, 'Using pruning methods, argument `r` is required'
save_path = osp.join(
args.output_path, f'{model_name}_{args.method}_r{args.r}_{args.calib_set}_{args.n_blocks_for_stat}_{"fatt2_" if args.use_flash_attention_2 else ""}{datetime.now().strftime("%Y%m%d-%H%M%S")}')
else:
if args.r is not None:
logger.warn(f'Not using pruning methods, argument `r` is not used')
save_path = osp.join(
args.output_path, f'{model_name}_{args.method}_{args.calib_set}_{args.n_blocks_for_stat}_{"fatt2_" if args.use_flash_attention_2 else ""}{datetime.now().strftime("%Y%m%d-%H%M%S")}')
logger.info(f'Save path: {save_path}')
os.makedirs(save_path, exist_ok=False)
set_seed(args.seed)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
device_map='auto',
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2" if args.use_flash_attention_2 else None
)
calib_loader = build_calib_loader(args.calib_set, tokenizer, args.max_block_size,
args.n_blocks_for_stat, args.batch_size, args.num_workers, args.seed)
model, info = METHODS[args.method](model, calib_loader, args)
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
torch.save((args, info), osp.join(save_path, 'pruning_info.pt'))
if __name__ == '__main__':
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
args = parse_args()
main(args)