-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathL0064_MinimumPathSum.java
87 lines (75 loc) · 2.5 KB
/
L0064_MinimumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
* https://leetcode.cn/problems/minimum-path-sum/
*
* 给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
*
* 说明:每次只能向下或者向右移动一步。
*
* 示例 1:
* 
* 输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
* 输出:7
* 解释:因为路径 1→3→1→1→1 的总和最小。
*
* 示例 2:
* 输入:grid = [[1,2,3],[4,5,6]]
* 输出:12
*
* 提示:
* m == grid.length
* n == grid[i].length
* 1 <= m, n <= 200
* 0 <= grid[i][j] <= 100
*/
public class L0064_MinimumPathSum {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
// 创建动态规划数组,dp[i][j] 表示到达位置 (i,j) 的最小路径和
int[][] dp = new int[m][n];
// 初始化起点
dp[0][0] = grid[0][0];
// 初始化第一行
for (int j = 1; j < n; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 初始化第一列
for (int i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// 动态规划计算每个位置的最小路径和
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
// 返回到达右下角的最小路径和
return dp[m - 1][n - 1];
}
public static void main(String[] args) {
L0064_MinimumPathSum solution = new L0064_MinimumPathSum();
// 测试用例 1
int[][] grid1 = {
{1, 3, 1},
{1, 5, 1},
{4, 2, 1}
};
System.out.println("测试用例 1:");
System.out.println("输入:grid = [[1,3,1],[1,5,1],[4,2,1]]");
System.out.println("输出:" + solution.minPathSum(grid1));
System.out.println("预期:7");
System.out.println();
// 测试用例 2
int[][] grid2 = {
{1, 2, 3},
{4, 5, 6}
};
System.out.println("测试用例 2:");
System.out.println("输入:grid = [[1,2,3],[4,5,6]]");
System.out.println("输出:" + solution.minPathSum(grid2));
System.out.println("预期:12");
}
}