-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbert_preprocess.py
241 lines (196 loc) · 8.73 KB
/
bert_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Data pre-processing: build vocabularies and binarize training data.
"""
from collections import Counter
from itertools import zip_longest
from fairseq import options, tasks, utils
from fairseq.data import indexed_dataset
from fairseq.binarizer import Binarizer
from multiprocessing import Pool
import os
import shutil
from transformers.tokenization_bert import BertTokenizer
def main(args):
utils.import_user_module(args)
print(args)
os.makedirs(args.destdir, exist_ok=True)
target = not args.only_source
task = tasks.get_task(args.task)
def train_path(lang):
return "{}{}".format(args.trainpref, ("." + lang) if lang else "")
def file_name(prefix, lang):
fname = prefix
if lang is not None:
fname += ".{lang}".format(lang=lang)
return fname
def dest_path(prefix, lang):
return os.path.join(args.destdir, file_name(prefix, lang))
def dict_path(lang):
return dest_path("dict", lang) + ".txt"
def build_dictionary(filenames, src=False, tgt=False):
assert src ^ tgt
return task.build_dictionary(
filenames,
workers=args.workers,
threshold=args.thresholdsrc if src else args.thresholdtgt,
nwords=args.nwordssrc if src else args.nwordstgt,
padding_factor=args.padding_factor,
)
if not args.srcdict and os.path.exists(dict_path(args.source_lang)):
raise FileExistsError(dict_path(args.source_lang))
if target and not args.tgtdict and os.path.exists(dict_path(args.target_lang)):
raise FileExistsError(dict_path(args.target_lang))
if args.joined_dictionary:
assert not args.srcdict or not args.tgtdict, \
"cannot use both --srcdict and --tgtdict with --joined-dictionary"
if args.srcdict:
src_dict = task.load_dictionary(args.srcdict)
elif args.tgtdict:
src_dict = task.load_dictionary(args.tgtdict)
else:
assert args.trainpref, "--trainpref must be set if --srcdict is not specified"
src_dict = build_dictionary(
{train_path(lang) for lang in [args.source_lang, args.target_lang]}, src=True
)
tgt_dict = src_dict
else:
if args.srcdict:
src_dict = task.load_dictionary(args.srcdict)
else:
assert args.trainpref, "--trainpref must be set if --srcdict is not specified"
src_dict = build_dictionary([train_path(args.source_lang)], src=True)
if target:
if args.tgtdict:
tgt_dict = task.load_dictionary(args.tgtdict)
else:
assert args.trainpref, "--trainpref must be set if --tgtdict is not specified"
tgt_dict = build_dictionary([train_path(args.target_lang)], tgt=True)
else:
tgt_dict = None
src_dict.save(dict_path(args.source_lang))
if target and tgt_dict is not None:
tgt_dict.save(dict_path(args.target_lang))
def make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers):
print("| [{}] Dictionary: {} types".format(lang, len(vocab) - 1))
output_prefix += '.bert' if isinstance(vocab, BertTokenizer) else ''
input_prefix += '.bert' if isinstance(vocab, BertTokenizer) else ''
n_seq_tok = [0, 0]
replaced = Counter()
def merge_result(worker_result):
replaced.update(worker_result["replaced"])
n_seq_tok[0] += worker_result["nseq"]
n_seq_tok[1] += worker_result["ntok"]
input_file = "{}{}".format(
input_prefix, ("." + lang) if lang is not None else ""
)
offsets = Binarizer.find_offsets(input_file, num_workers)
pool = None
if num_workers > 1:
pool = Pool(processes=num_workers - 1)
for worker_id in range(1, num_workers):
prefix = "{}{}".format(output_prefix, worker_id)
pool.apply_async(
binarize,
(
args,
input_file,
vocab,
prefix,
lang,
offsets[worker_id],
offsets[worker_id + 1],
),
callback=merge_result
)
pool.close()
ds = indexed_dataset.make_builder(dataset_dest_file(args, output_prefix, lang, "bin"),
impl=args.dataset_impl,
vocab_size=None if isinstance(vocab, BertTokenizer) else len(vocab))
merge_result(
Binarizer.binarize(
input_file, vocab, lambda t: ds.add_item(t),
offset=0, end=offsets[1]
)
)
if num_workers > 1:
pool.join()
for worker_id in range(1, num_workers):
prefix = "{}{}".format(output_prefix, worker_id)
temp_file_path = dataset_dest_prefix(args, prefix, lang)
ds.merge_file_(temp_file_path)
os.remove(indexed_dataset.data_file_path(temp_file_path))
os.remove(indexed_dataset.index_file_path(temp_file_path))
ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx"))
print(
"| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}".format(
lang,
input_file,
n_seq_tok[0],
n_seq_tok[1],
100 * sum(replaced.values()) / n_seq_tok[1],
vocab.unk_token if isinstance(vocab, BertTokenizer) else vocab.unk_word,
)
)
def make_dataset(vocab, input_prefix, output_prefix, lang, num_workers=1):
if args.dataset_impl == "raw":
# Copy original text file to destination folder
output_text_file = dest_path(
output_prefix + ".{}-{}".format(args.source_lang, args.target_lang),
lang,
)
shutil.copyfile(file_name(input_prefix, lang), output_text_file)
else:
make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers)
def make_all(lang, vocab):
if args.trainpref:
make_dataset(vocab, args.trainpref, "train", lang, num_workers=args.workers)
if args.validpref:
for k, validpref in enumerate(args.validpref.split(",")):
outprefix = "valid{}".format(k) if k > 0 else "valid"
make_dataset(vocab, validpref, outprefix, lang, num_workers=args.workers)
if args.testpref:
for k, testpref in enumerate(args.testpref.split(",")):
outprefix = "test{}".format(k) if k > 0 else "test"
make_dataset(vocab, testpref, outprefix, lang, num_workers=args.workers)
make_all(args.source_lang, src_dict)
if args.bert_model_name != 'no-bert':
bert_tokenizer = BertTokenizer.from_pretrained(args.bert_model_name)
make_all(args.source_lang, bert_tokenizer)
if target:
make_all(args.target_lang, tgt_dict)
print("| Wrote preprocessed data to {}".format(args.destdir))
def binarize(args, filename, vocab, output_prefix, lang, offset, end, append_eos=True):
ds = indexed_dataset.make_builder(dataset_dest_file(args, output_prefix, lang, "bin"),
impl=args.dataset_impl,
vocab_size=None if isinstance(vocab, BertTokenizer) else len(vocab))
def consumer(tensor):
ds.add_item(tensor)
res = Binarizer.binarize(filename, vocab, consumer, append_eos=append_eos,
offset=offset, end=end)
ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx"))
return res
def dataset_dest_prefix(args, output_prefix, lang):
base = "{}/{}".format(args.destdir, output_prefix)
if lang is not None:
lang_part = ".{}-{}.{}".format(args.source_lang, args.target_lang, lang)
elif args.only_source:
lang_part = ""
else:
lang_part = ".{}-{}".format(args.source_lang, args.target_lang)
return "{}{}".format(base, lang_part)
def dataset_dest_file(args, output_prefix, lang, extension):
base = dataset_dest_prefix(args, output_prefix, lang)
return "{}.{}".format(base, extension)
def get_offsets(input_file, num_workers):
return Binarizer.find_offsets(input_file, num_workers)
def cli_main():
parser = options.get_preprocessing_parser()
args = parser.parse_args()
main(args)
if __name__ == "__main__":
cli_main()