-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtest_tpu_backend.py
273 lines (200 loc) · 8.33 KB
/
test_tpu_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import collections
from copy import deepcopy
import pytest
import torch
from torch import nn
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators.cpu import CPUAccelerator
from pytorch_lightning.accelerators.tpu import TPUAccelerator
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.plugins import TPUSpawnPlugin
from pytorch_lightning.utilities import find_shared_parameters
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
from tests.helpers.utils import pl_multi_process_test
class WeightSharingModule(BoringModel):
def __init__(self):
super().__init__()
self.layer_1 = nn.Linear(32, 10, bias=False)
self.layer_2 = nn.Linear(10, 32, bias=False)
self.layer_3 = nn.Linear(32, 10, bias=False)
self.layer_3.weight = self.layer_1.weight
def forward(self, x):
x = self.layer_1(x)
x = self.layer_2(x)
x = self.layer_3(x)
return x
@RunIf(tpu=True)
@pl_multi_process_test
def test_resume_training_on_cpu(tmpdir):
"""Checks if training can be resumed from a saved checkpoint on CPU."""
# Train a model on TPU
model = BoringModel()
trainer = Trainer(max_epochs=1, tpu_cores=8)
trainer.fit(model)
model_path = trainer.checkpoint_callback.best_model_path
# Verify saved Tensors are on CPU
ckpt = torch.load(model_path)
weight_tensor = list(ckpt["state_dict"].values())[0]
assert weight_tensor.device == torch.device("cpu")
# Verify that training is resumed on CPU
trainer = Trainer(resume_from_checkpoint=model_path, max_epochs=1, default_root_dir=tmpdir)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(tpu=True)
@pl_multi_process_test
def test_if_test_works_after_train(tmpdir):
"""Ensure that .test() works after .fit()"""
# Train a model on TPU
model = BoringModel()
trainer = Trainer(max_epochs=1, tpu_cores=8, default_root_dir=tmpdir, fast_dev_run=True)
trainer.fit(model)
assert len(trainer.test(model)) == 1
@RunIf(tpu=True)
def test_accelerator_tpu():
trainer = Trainer(accelerator="tpu", tpu_cores=8)
assert trainer._device_type == "tpu"
assert isinstance(trainer.accelerator, TPUAccelerator)
with pytest.raises(
MisconfigurationException, match="You passed `accelerator='tpu'`, but you didn't pass `tpu_cores` to `Trainer`"
):
trainer = Trainer(accelerator="tpu")
@RunIf(tpu=True)
def test_accelerator_cpu_with_tpu_cores_flag():
trainer = Trainer(accelerator="cpu", tpu_cores=8)
assert trainer._device_type == "cpu"
assert isinstance(trainer.accelerator, CPUAccelerator)
@RunIf(tpu=True)
def test_accelerator_tpu_with_auto():
trainer = Trainer(accelerator="auto", tpu_cores=8)
assert trainer._device_type == "tpu"
assert isinstance(trainer.accelerator, TPUAccelerator)
@RunIf(tpu=True)
def test_accelerator_tpu_with_devices():
trainer = Trainer(accelerator="tpu", devices=8)
assert trainer.tpu_cores == 8
assert isinstance(trainer.training_type_plugin, TPUSpawnPlugin)
assert isinstance(trainer.accelerator, TPUAccelerator)
@RunIf(tpu=True)
def test_accelerator_auto_with_devices_tpu():
trainer = Trainer(accelerator="auto", devices=8)
assert trainer._device_type == "tpu"
assert trainer.tpu_cores == 8
@RunIf(tpu=True)
def test_accelerator_tpu_with_tpu_cores_priority():
"""Test for checking `tpu_cores` flag takes priority over `devices`."""
tpu_cores = 8
with pytest.warns(UserWarning, match="The flag `devices=1` will be ignored,"):
trainer = Trainer(accelerator="tpu", devices=1, tpu_cores=tpu_cores)
assert trainer.tpu_cores == tpu_cores
@RunIf(tpu=True)
def test_set_devices_if_none_tpu():
trainer = Trainer(accelerator="tpu", tpu_cores=8)
assert trainer.devices == 8
@RunIf(tpu=True)
def test_manual_optimization_tpus(tmpdir):
class ManualOptimizationModel(BoringModel):
count = 0
called = collections.defaultdict(int)
def __init__(self):
super().__init__()
self.automatic_optimization = False
@property
def should_update(self):
return self.count % 2 == 0
def on_train_batch_start(self, batch, batch_idx):
self.called["on_train_batch_start"] += 1
self.weight_before = self.layer.weight.clone()
def training_step(self, batch, batch_idx):
self.called["training_step"] += 1
opt = self.optimizers()
output = self.layer(batch)
loss = self.loss(batch, output)
if self.should_update:
self.manual_backward(loss)
opt.step()
opt.zero_grad()
return loss
def on_train_batch_end(self, outputs, batch, batch_idx):
self.called["on_train_batch_end"] += 1
after_before = self.layer.weight.clone()
if self.should_update:
assert not torch.equal(self.weight_before, after_before), self.count
else:
assert torch.equal(self.weight_before, after_before)
assert torch.all(self.layer.weight.grad == 0)
self.count += 1
def on_train_end(self):
assert self.called["training_step"] == 5
assert self.called["on_train_batch_start"] == 5
assert self.called["on_train_batch_end"] == 5
class TestManualOptimizationCallack(Callback):
def on_train_end(self, trainer, pl_module):
opt = pl_module.optimizers()
assert opt._total_optimizer_step_calls == 3
model = ManualOptimizationModel()
model_copy = deepcopy(model)
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=5,
limit_test_batches=0,
limit_val_batches=0,
tpu_cores=8,
callbacks=[TestManualOptimizationCallack()],
)
trainer.fit(model)
for param, param_copy in zip(model.parameters(), model_copy.parameters()):
assert not torch.equal(param.cpu().data, param_copy.data)
@RunIf(tpu=True)
def test_ddp_cpu_not_supported_on_tpus():
with pytest.raises(MisconfigurationException, match="`accelerator='ddp_cpu'` is not supported on TPU machines"):
Trainer(accelerator="ddp_cpu")
@RunIf(tpu=True)
def test_auto_parameters_tying_tpus(tmpdir):
model = WeightSharingModule()
shared_params = find_shared_parameters(model)
assert shared_params[0] == ["layer_1.weight", "layer_3.weight"]
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=5, tpu_cores=8, max_epochs=1)
trainer.fit(model)
assert torch.all(torch.eq(model.layer_1.weight, model.layer_3.weight))
@RunIf(tpu=True)
def test_auto_parameters_tying_tpus_nested_module(tmpdir):
class SubModule(nn.Module):
def __init__(self, layer):
super().__init__()
self.layer = layer
def forward(self, x):
return self.layer(x)
class NestedModule(BoringModel):
def __init__(self):
super().__init__()
self.layer = nn.Linear(32, 10, bias=False)
self.net_a = SubModule(self.layer)
self.layer_2 = nn.Linear(10, 32, bias=False)
self.net_b = SubModule(self.layer)
def forward(self, x):
x = self.net_a(x)
x = self.layer_2(x)
x = self.net_b(x)
return x
model = NestedModule()
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=5, tpu_cores=8, max_epochs=1)
trainer.fit(model)
assert torch.all(torch.eq(model.net_a.layer.weight, model.net_b.layer.weight))