-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathtensorboard.py
329 lines (268 loc) · 12.6 KB
/
tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from argparse import Namespace
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from torch.nn import Module
from typing_extensions import override
from lightning.fabric.loggers.logger import Logger, rank_zero_experiment
from lightning.fabric.utilities.cloud_io import _is_dir, get_filesystem
from lightning.fabric.utilities.logger import _add_prefix, _convert_params, _flatten_dict
from lightning.fabric.utilities.logger import _sanitize_params as _utils_sanitize_params
from lightning.fabric.utilities.rank_zero import rank_zero_only, rank_zero_warn
from lightning.fabric.utilities.types import _PATH
from lightning.fabric.wrappers import _unwrap_objects
_TENSORBOARD_AVAILABLE = RequirementCache("tensorboard")
_TENSORBOARDX_AVAILABLE = RequirementCache("tensorboardX")
if TYPE_CHECKING:
# assumes at least one will be installed when type checking
if _TENSORBOARD_AVAILABLE:
from torch.utils.tensorboard import SummaryWriter
else:
from tensorboardX import SummaryWriter # type: ignore[no-redef]
class TensorBoardLogger(Logger):
r"""Log to local file system in `TensorBoard <https://www.tensorflow.org/tensorboard>`_ format.
Implemented using :class:`~tensorboardX.SummaryWriter`. Logs are saved to
``os.path.join(root_dir, name, version)``. This is the recommended logger in Lightning Fabric.
Args:
root_dir: The root directory in which all your experiments with different names and versions will be stored.
name: Experiment name. Defaults to ``'lightning_logs'``. If it is the empty string then no per-experiment
subdirectory is used.
version: Experiment version. If version is not specified the logger inspects the save
directory for existing versions, then automatically assigns the next available version.
If it is a string then it is used as the run-specific subdirectory name,
otherwise ``'version_${version}'`` is used.
default_hp_metric: Enables a placeholder metric with key `hp_metric` when `log_hyperparams` is
called without a metric (otherwise calls to ``log_hyperparams`` without a metric are ignored).
prefix: A string to put at the beginning of all metric keys.
sub_dir: Sub-directory to group TensorBoard logs. If a ``sub_dir`` argument is passed
then logs are saved in ``/root_dir/name/version/sub_dir/``. Defaults to ``None`` in which case
logs are saved in ``/root_dir/name/version/``.
\**kwargs: Additional arguments used by :class:`tensorboardX.SummaryWriter` can be passed as keyword
arguments in this logger. To automatically flush to disk, `max_queue` sets the size
of the queue for pending logs before flushing. `flush_secs` determines how many seconds
elapses before flushing.
Example::
from lightning.fabric.loggers import TensorBoardLogger
logger = TensorBoardLogger("path/to/logs/root", name="my_model")
logger.log_hyperparams({"epochs": 5, "optimizer": "Adam"})
logger.log_metrics({"acc": 0.75})
logger.finalize("success")
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
root_dir: _PATH,
name: Optional[str] = "lightning_logs",
version: Optional[Union[int, str]] = None,
default_hp_metric: bool = True,
prefix: str = "",
sub_dir: Optional[_PATH] = None,
**kwargs: Any,
):
if not _TENSORBOARD_AVAILABLE and not _TENSORBOARDX_AVAILABLE:
raise ModuleNotFoundError(
"Neither `tensorboard` nor `tensorboardX` is available. Try `pip install`ing either.\n"
f"{str(_TENSORBOARDX_AVAILABLE)}\n{str(_TENSORBOARD_AVAILABLE)}"
)
super().__init__()
root_dir = os.fspath(root_dir)
self._root_dir = root_dir
self._name = name or ""
self._version = version
self._sub_dir = None if sub_dir is None else os.fspath(sub_dir)
self._default_hp_metric = default_hp_metric
self._prefix = prefix
self._fs = get_filesystem(root_dir)
self._experiment: Optional[SummaryWriter] = None
self._kwargs = kwargs
@property
@override
def name(self) -> str:
"""Get the name of the experiment.
Returns:
The name of the experiment.
"""
return self._name
@property
@override
def version(self) -> Union[int, str]:
"""Get the experiment version.
Returns:
The experiment version if specified else the next version.
"""
if self._version is None:
self._version = self._get_next_version()
return self._version
@property
@override
def root_dir(self) -> str:
"""Gets the save directory where the TensorBoard experiments are saved.
Returns:
The local path to the save directory where the TensorBoard experiments are saved.
"""
return self._root_dir
@property
@override
def log_dir(self) -> str:
"""The directory for this run's tensorboard checkpoint.
By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the
constructor's version parameter instead of ``None`` or an int.
"""
version = self.version if isinstance(self.version, str) else f"version_{self.version}"
log_dir = os.path.join(self.root_dir, self.name, version)
if isinstance(self.sub_dir, str):
log_dir = os.path.join(log_dir, self.sub_dir)
log_dir = os.path.expandvars(log_dir)
log_dir = os.path.expanduser(log_dir)
return log_dir
@property
def sub_dir(self) -> Optional[str]:
"""Gets the sub directory where the TensorBoard experiments are saved.
Returns:
The local path to the sub directory where the TensorBoard experiments are saved.
"""
return self._sub_dir
@property
@rank_zero_experiment
def experiment(self) -> "SummaryWriter":
"""Actual tensorboard object. To use TensorBoard features anywhere in your code, do the following.
Example::
logger.experiment.some_tensorboard_function()
"""
if self._experiment is not None:
return self._experiment
assert rank_zero_only.rank == 0, "tried to init log dirs in non global_rank=0"
if self.root_dir:
self._fs.makedirs(self.root_dir, exist_ok=True)
if _TENSORBOARD_AVAILABLE:
from torch.utils.tensorboard import SummaryWriter
else:
from tensorboardX import SummaryWriter # type: ignore[no-redef]
self._experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs)
return self._experiment
@override
@rank_zero_only
def log_metrics(self, metrics: Mapping[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
for k, v in metrics.items():
if isinstance(v, Tensor):
v = v.item()
if isinstance(v, dict):
self.experiment.add_scalars(k, v, step)
else:
try:
self.experiment.add_scalar(k, v, step)
# TODO(fabric): specify the possible exception
except Exception as ex:
raise ValueError(
f"\n you tried to log {v} which is currently not supported. Try a dict or a scalar/tensor."
) from ex
@override
@rank_zero_only
def log_hyperparams(
self, params: Union[Dict[str, Any], Namespace], metrics: Optional[Dict[str, Any]] = None
) -> None:
"""Record hyperparameters. TensorBoard logs with and without saved hyperparameters are incompatible, the
hyperparameters are then not displayed in the TensorBoard. Please delete or move the previously saved logs to
display the new ones with hyperparameters.
Args:
params: a dictionary-like container with the hyperparameters
metrics: Dictionary with metric names as keys and measured quantities as values
"""
params = _convert_params(params)
# format params into the suitable for tensorboard
params = _flatten_dict(params)
params = self._sanitize_params(params)
if metrics is None:
if self._default_hp_metric:
metrics = {"hp_metric": -1}
elif not isinstance(metrics, dict):
metrics = {"hp_metric": metrics}
if metrics:
self.log_metrics(metrics, 0)
if _TENSORBOARD_AVAILABLE:
from torch.utils.tensorboard.summary import hparams
else:
from tensorboardX.summary import hparams # type: ignore[no-redef]
exp, ssi, sei = hparams(params, metrics)
writer = self.experiment._get_file_writer()
writer.add_summary(exp)
writer.add_summary(ssi)
writer.add_summary(sei)
@override
@rank_zero_only
def log_graph(self, model: Module, input_array: Optional[Tensor] = None) -> None:
model_example_input = getattr(model, "example_input_array", None)
input_array = model_example_input if input_array is None else input_array
model = _unwrap_objects(model)
if input_array is None:
rank_zero_warn(
"Could not log computational graph to TensorBoard: The `model.example_input_array` attribute"
" is not set or `input_array` was not given."
)
elif not isinstance(input_array, (Tensor, tuple)):
rank_zero_warn(
"Could not log computational graph to TensorBoard: The `input_array` or `model.example_input_array`"
f" has type {type(input_array)} which can't be traced by TensorBoard. Make the input array a tuple"
f" representing the positional arguments to the model's `forward()` implementation."
)
elif callable(getattr(model, "_on_before_batch_transfer", None)) and callable(
getattr(model, "_apply_batch_transfer_handler", None)
):
# this is probably is a LightningModule
input_array = model._on_before_batch_transfer(input_array)
input_array = model._apply_batch_transfer_handler(input_array)
self.experiment.add_graph(model, input_array)
else:
self.experiment.add_graph(model, input_array)
@override
@rank_zero_only
def save(self) -> None:
self.experiment.flush()
@override
@rank_zero_only
def finalize(self, status: str) -> None:
if self._experiment is not None:
self.experiment.flush()
self.experiment.close()
def _get_next_version(self) -> int:
save_dir = os.path.join(self.root_dir, self.name)
try:
listdir_info = self._fs.listdir(save_dir)
except OSError:
return 0
existing_versions = []
for listing in listdir_info:
d = listing["name"]
bn = os.path.basename(d)
if _is_dir(self._fs, d) and bn.startswith("version_"):
dir_ver = bn.split("_")[1].replace("/", "")
if dir_ver.isdigit():
existing_versions.append(int(dir_ver))
if len(existing_versions) == 0:
return 0
return max(existing_versions) + 1
@staticmethod
def _sanitize_params(params: Dict[str, Any]) -> Dict[str, Any]:
params = _utils_sanitize_params(params)
# logging of arrays with dimension > 1 is not supported, sanitize as string
return {k: str(v) if hasattr(v, "ndim") and v.ndim > 1 else v for k, v in params.items()}
def __getstate__(self) -> Dict[str, Any]:
state = self.__dict__.copy()
state["_experiment"] = None
return state