-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·153 lines (133 loc) · 6.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import random
import torch
import argparse
import os
import time
import numpy as np
from collections import deque
# ------------------------------
from DQN_Zoo import DQN
from DQN_Zoo import Double_DQN
from DQN_Zoo import Dueling_DQN
from DQN_Zoo import Dueling_Double_DQN
# -------------------------------
from environments.wrappers import wrap, wrap_cover, SubprocVecEnv
from utils import replay_buffer
from utils.schedule import LinearSchedule
from spinupUtils.logx import EpochLogger
from spinupUtils.run_utils import setup_logger_kwargs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy", default="DQN", type=str) # Policy name
parser.add_argument("--env", default="Pong", type=str) # OpenAI gym environment name
parser.add_argument("--num_envs", default=10, type=int) # Num of vector-envs paralleled
parser.add_argument("--seed", default=0, type=int) # Set seeds for Gym, PyTorch and Numpy
parser.add_argument("--start_timesteps", default=1e4, type=int) # Time steps for initial random policy
parser.add_argument("--eval_freq", default=1e3, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=2e7, type=int) # Max timesteps to run environment
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--policy_freq", default=1e3, type=int) # Frequency of delayed policy updates
parser.add_argument("--update_freq", default=4, type=int) # Frequency of updating the Q function
parser.add_argument("--buffer_size", default=1e6, type=int) # Size of buffer
parser.add_argument("--batch_size", default=64, type=int) # Batch size for Q network training
parser.add_argument("--gradient_clip", default=10.0, type=float) # Clipping gradient
parser.add_argument("--save_model", action="store_true") # Save model and optimizer parameters
parser.add_argument("--load_model", default="") # Model-loading file name, "" doesn't load, "default" uses file_name
parser.add_argument("--exp_name", type=str) # Name for algorithms
args = parser.parse_args()
file_name = f"{args.policy}_{args.env}_{args.seed}"
print(f"---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print(f"---------------------------------------")
# Make envs
env_name = f"{args.env}NoFrameskip-v4"
env = SubprocVecEnv([wrap_cover(env_name, args.seed) for i in range(args.num_envs)])
# Set seeds
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
action_dim = env.action_space.n
kwargs = {
"action_dim": action_dim,
"discount": args.discount,
"gradient_clip": args.gradient_clip,
}
# Initialize policy
# ----------------------------------------------
if args.policy == "DQN":
kwargs["policy_freq"] = int(args.policy_freq) // int(args.num_envs)
kwargs["learning_rate"] = 1e-4
policy = DQN.DQN(**kwargs)
eps_schedule = LinearSchedule(1.0, 0.01, 1e6) # annealing epsilon
args.batch_size = 64
elif args.policy == "Double_DQN":
kwargs["policy_freq"] = int(args.policy_freq) // int(args.num_envs)
kwargs["learning_rate"] = 1e-4
policy = Double_DQN.DoubleDQN(**kwargs)
eps_schedule = LinearSchedule(1.0, 0.01, 1e6) # annealing epsilon
args.batch_size = 64
# ----------------------------------------------
elif args.policy == "Dueling_DQN":
kwargs["policy_freq"] = int(args.policy_freq) // int(args.num_envs)
kwargs["learning_rate"] = 1e-4
policy = Dueling_DQN.DuelingDQN(**kwargs)
eps_schedule = LinearSchedule(1.0, 0.01, 1e6) # annealing epsilon
elif args.policy == "Dueling_Double_DQN":
kwargs["policy_freq"] = int(args.policy_freq) // int(args.num_envs)
kwargs["learning_rate"] = 1e-4
policy = Dueling_Double_DQN.DuelingDoubleDQN(**kwargs)
eps_schedule = LinearSchedule(1.0, 0.01, 1e6) # annealing epsilon
else:
raise ValueError(f"Invalid Policy: {args.policy}!")
if args.save_model and not os.path.exists("./models"):
os.makedirs("./models")
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
if not os.path.exists(f"./models/{policy_file}"):
assert f"The loading model path of `../models/{policy_file}` does not exist! "
policy.load(f"./models/{policy_file}")
# Setup loggers
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed, datestamp=False)
logger = EpochLogger(**logger_kwargs)
_replay_buffer = replay_buffer.ReplayBuffer(int(args.buffer_size))
print("Collecting experience...")
epinfobuf = deque(maxlen=100) # episode step for accumulate reward
start_time = time.time() # check learning time
states = np.array(env.reset()) # env reset, output array of num of `#num_envs` states
step = 0
for t in range(1, int(args.max_timesteps) // int(args.num_envs) + 1):
actions = policy.select_action(states, eps_schedule.value)
next_states, rewards, dones, infos = env.step(actions) # take actions and get next states
next_states = np.array(next_states)
# log arrange
for info in infos:
maybeepinfo = info.get("episode")
if maybeepinfo:
epinfobuf.append(maybeepinfo)
# Store the transition
for i in range(args.num_envs):
_replay_buffer.add(states[i], actions[i], next_states[i], rewards[i], dones[i])
step += 1
eps_schedule.update(step) # Annealing the epsilon, for exploration strategy
states = next_states
# If memory fill 50K and mod 4 == 0 (for speed issue), update the policy
if (step >= args.start_timesteps) and (step % args.update_freq == 0):
policy.train(_replay_buffer, batch_size=args.batch_size)
# print log and save model
if t % args.eval_freq == 0:
if args.save_model:
policy.save(f"./models/{file_name}")
# check time interval
time_interval = round(time.time() - start_time, 2)
mean_100_ep_return = round(np.mean([epinfo['r'] for epinfo in epinfobuf]), 2) # calculate mean return
print(f"Used Step: {step} | Epsilon: {round(eps_schedule.value, 3)} "
f"| Mean ep 100 return: {mean_100_ep_return} "
f"| Used Time: {time_interval}")
# store the logger
logger.log_tabular("MeanEpReward", mean_100_ep_return)
logger.log_tabular("TotalEnvInteracts", step)
logger.log_tabular("Time", time_interval)
logger.dump_tabular()
print("The training is done!")