-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_DFMnet.py
117 lines (94 loc) · 4.79 KB
/
test_DFMnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import time
import tensorflow as tf
import scipy.io as sio
import numpy as np
from scipy.spatial import cKDTree
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('num_evecs', 120, 'number of eigenvectors used for representation')
flags.DEFINE_integer('num_model', 10000, '')
flags.DEFINE_string('test_shapes_dir', '../UnsupervisedFMapNet/Scr/Unsupervised_FMnet/Shapes/SCAPE_r/MAT_SHOT/', '')
flags.DEFINE_string('files_name', 'mesh', 'name common to all the shapes')
flags.DEFINE_string('log_dir', './Training/SCAPE_r/1500/', 'directory to save targets results')
flags.DEFINE_string('matches_dir', './Matches/SCAPE_r/1500/', 'directory to matches')
def get_test_pair_source(source_fname):
input_data = {}
source_file = '%s%s.mat' % (FLAGS.test_shapes_dir, source_fname)
# This loads the source but with a target name so next lines re-names
input_data.update(sio.loadmat(source_file))
input_data['source_evecs'] = input_data['target_evecs']
del input_data['target_evecs']
input_data['source_evecs_trans'] = input_data['target_evecs_trans']
del input_data['target_evecs_trans']
input_data['source_shot'] = input_data['target_shot']
del input_data['target_shot']
input_data['source_evals'] = np.transpose(input_data['target_evals'])
del input_data['target_evals']
return input_data
def get_test_pair_target(target_fname):
input_data = {}
target_file = '%s%s.mat' % (FLAGS.test_shapes_dir, target_fname)
input_data.update(sio.loadmat(target_file))
input_data['target_evals'] = np.transpose(input_data['target_evals'])
return input_data
def run_test():
# Start session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
print('restoring graph...')
saver = tf.train.import_meta_graph('%smodel.ckpt-%s.meta' % (FLAGS.log_dir, FLAGS.num_model))
saver.restore(sess, tf.train.latest_checkpoint('%s' % FLAGS.log_dir))
graph = tf.get_default_graph()
# Retrieve placeholder variables
source_evecs = graph.get_tensor_by_name('source_evecs:0')
source_evecs_trans = graph.get_tensor_by_name('source_evecs_trans:0')
target_evecs = graph.get_tensor_by_name('target_evecs:0')
target_evecs_trans = graph.get_tensor_by_name('target_evecs_trans:0')
source_shot = graph.get_tensor_by_name('source_shot:0')
target_shot = graph.get_tensor_by_name('target_shot:0')
phase = graph.get_tensor_by_name('phase:0')
source_evals = graph.get_tensor_by_name('source_evals:0')
target_evals = graph.get_tensor_by_name('target_evals:0')
Ct_est = graph.get_tensor_by_name(
'matrix_solve_ls/cholesky_solve/MatrixTriangularSolve_1:0'
)
os.mkdir(matches_dir)
for i in range(60, 69):
input_data_source = get_test_pair_source(FLAGS.files_name + '%.3d' % i)
source_evecs_ = input_data_source['source_evecs'][:, 0:FLAGS.num_evecs]
for j in range(i+1, 70):
t = time.time()
input_data_target = get_test_pair_target(FLAGS.files_name +'%.3d' % j)
feed_dict = {
phase: True,
source_shot: [input_data_source['source_shot']],
target_shot: [input_data_target['target_shot']],
source_evecs: [input_data_source['source_evecs'][:,0:FLAGS.num_evecs]],
source_evecs_trans: [input_data_source['source_evecs_trans'][0:FLAGS.num_evecs,:]],
source_evals: [input_data_source['source_evals'][0][0:FLAGS.num_evecs]],
target_evecs: [input_data_target['target_evecs'][:, 0:FLAGS.num_evecs]],
target_evecs_trans: [input_data_target['target_evecs_trans'][0:FLAGS.num_evecs,:]],
target_evals: [input_data_target['target_evals'][0][0:FLAGS.num_evecs]]
}
Ct_est_ = sess.run([Ct_est], feed_dict=feed_dict)
Ct = np.squeeze(Ct_est_) #Keep transposed
kdt = cKDTree(np.matmul(source_evecs_, Ct))
target_evecs_ = input_data_target['target_evecs'][:, 0:FLAGS.num_evecs]
dist, indices = kdt.query(target_evecs_, n_jobs=-1)
indices = indices + 1
print("Computed correspondences for pair: %s, %s." % (i, j) +" Took %f seconds" % (time.time() - t))
params_to_save = {}
params_to_save['matches'] = indices
#params_to_save['C'] = Ct.T
# For Matlab where index start at 1
sio.savemat(FLAGS.matches_dir +
FLAGS.files_name + '%.3d-' % i +
FLAGS.files_name + '%.3d.mat' % j, params_to_save)
def main(_):
import time
start_time = time.time()
run_test()
print("--- %s seconds ---" % (time.time() - start_time))
if __name__ == '__main__':
tf.app.run()