-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
359 lines (311 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import tensorflow as tf
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras.optimizers import Adam, SGD, Adadelta, Nadam
from tensorflow_addons.optimizers import SGDW, AdamW, AdaBelief
from keras import mixed_precision
from lib.losses import IoULoss, DiceLoss, TverskyLoss, FocalTverskyLoss, HybridLoss, FocalHybridLoss
from lib.datasets import CityscapesDataset, MapillaryDataset
from lib.eval import MeanIoU
from lib.models import Unet, Residual_Unet, Attention_Unet, Unet_plus, DeepLabV3plus
from tensorflow_addons.optimizers import CyclicalLearningRate
from argparse import ArgumentParser
import yaml
parser = ArgumentParser('')
parser.add_argument('--config', type=str, nargs='?')
parser.add_argument('--data_path', type=str, nargs='?')
parser.add_argument('--dataset', type=str, nargs='?', default='Cityscapes', choices=['Cityscapes', 'Mapillary'])
parser.add_argument('--model_type', type=str, nargs='?', choices=['Unet', 'Residual_Unet', 'Attention_Unet', 'Unet_plus', 'DeepLabV3plus'])
parser.add_argument('--model_name', type=str, nargs='?')
parser.add_argument('--backbone', type=str, nargs='?', default='None')
parser.add_argument('--output_stride', type=int, nargs='?', default=32)
parser.add_argument('--unfreeze_at', type=str, nargs='?')
parser.add_argument('--activation', type=str, nargs='?', default='relu')
parser.add_argument('--dropout', type=float, nargs='?', default=0.0)
parser.add_argument('--optimizer', type=str, nargs='?', default='Adam', choices=['Adam', 'Adadelta', 'Nadam', 'AdaBelief', 'AdamW', 'SGDW'])
parser.add_argument('--loss', type=str, nargs='?', default='FocalHybridLoss', choices=['DiceLoss', 'IoULoss', 'TverskyLoss', 'FocalTverskyLoss', 'HybridLoss', 'FocalHybridLoss'])
parser.add_argument('--batch_size', type=int, nargs='?', default='3')
parser.add_argument('--augment', type=bool, nargs='?', default=False)
parser.add_argument('--epochs', type=int, nargs='?', default='20')
parser.add_argument('--final_epochs', type=int, nargs='?', default='60')
args = parser.parse_args()
if args.config is None:
# parse arguments
print('Reading configuration from cmd args')
DATA_PATH = args.data_path
DATASET = args.dataset
MODEL_TYPE = args.model_type
MODEL_NAME = args.model_name
BACKBONE = args.backbone
OUTPUT_STRIDE = args.output_stride
OPTIMIZER_NAME = args.optimizer
UNFREEZE_AT = args.unfreeze_at
LOSS = args.loss
BATCH_SIZE = args.batch_size
ACTIVATION = args.activation
DROPOUT_RATE = args.dropout
AUGMENT = args.augment
EPOCHS = args.epochs
FINAL_EPOCHS = args.final_epochs
else:
# Read YAML file
print('Reading configuration from config yaml')
with open(args.config, 'r') as config_file:
config = yaml.safe_load(config_file)
LOGS_DIR = config['logs_dir']
model_config = config['model']
dataset_config = config['dataset']
train_config = config['train_config']
# Dataset Configuration
DATASET = dataset_config['name']
DATA_PATH = dataset_config['path']
VERSION = dataset_config['version']
NUM_TRAIN_IMAGES = dataset_config['num_train_images']
NUM_EVAL_IMAGES = dataset_config['num_eval_images']
CACHE = dataset_config['cache']
CACHE_FILE = dataset_config['cache_file']
SEED = dataset_config['seed']
# Model Configuration
MODEL_TYPE = model_config['architecture']
MODEL_NAME = model_config['name']
BACKBONE = model_config['backbone']
UNFREEZE_AT = model_config['unfreeze_at']
INPUT_SHAPE = model_config['input_shape']
OUTPUT_STRIDE = model_config['output_stride']
FILTERS = model_config['filters']
ACTIVATION = model_config['activation']
DROPOUT_RATE = model_config['dropout_rate']
# Training Configuration
PRETRAINED_WEIGHTS = model_config['pretrained_weights']
BATCH_SIZE = train_config['batch_size']
EPOCHS = train_config['epochs']
FINAL_EPOCHS = train_config['final_epochs']
AUGMENT = train_config['augment']
MIXED_PRECISION = train_config['mixed_precision']
LOSS = train_config['loss']
optimizer_config = train_config['optimizer']
OPTIMIZER_NAME = optimizer_config['name']
WEIGHT_DECAY = optimizer_config['weight_decay']
MOMENTUM = optimizer_config['momentum']
START_LR = optimizer_config['schedule']['start_lr']
END_LR = optimizer_config['schedule']['end_lr']
LR_DECAY_EPOCHS = optimizer_config['schedule']['decay_epochs']
POWER = optimizer_config['schedule']['power']
DISTRIBUTE_STRATEGY = train_config['distribute']['strategy']
DEVICES = train_config['distribute']['devices']
if DATASET == 'Cityscapes':
NUM_CLASSES = 20
IGNORE_CLASS = 19
INPUT_SHAPE = (1024, 2048, 3)
elif DATASET == 'Mapillary':
INPUT_SHAPE = (1024, 1856, 3)
if VERSION == 'v1.2':
NUM_CLASSES = 64
IGNORE_CLASS = 63
elif VERSION == 'v2.0':
NUM_CLASSES = 118
IGNORE_CLASS = 117
else:
raise ValueError('Version of the Mapillary Vistas dataset should be either v1.2 or v2.0!')
else:
raise ValueError(F'{DATASET} dataset is invalid. Available Datasets are: Cityscapes, Mapillary!')
# Define preprocessing according to the Backbone
if BACKBONE == 'None':
PREPROCESSING = 'default'
BACKBONE = None
elif 'ResNet' in BACKBONE:
PREPROCESSING = 'ResNet'
if 'V2' in BACKBONE:
PREPROCESSING = 'ResNetV2'
elif 'EfficientNet' in BACKBONE:
PREPROCESSING = 'EfficientNet'
elif 'EfficientNetV2' in BACKBONE:
PREPROCESSING = 'EfficientNetV2'
elif 'MobileNet' == BACKBONE:
PREPROCESSING = 'MobileNet'
elif 'MobileNetV2' == BACKBONE:
PREPROCESSING = 'MobileNetV2'
elif 'MobileNetV3' in BACKBONE:
PREPROCESSING = 'MobileNetV3'
elif 'RegNet' in BACKBONE:
PREPROCESSING = 'RegNet'
else:
raise ValueError(f'Enter a valid Backbone name, {BACKBONE} is invalid.')
if MIXED_PRECISION:
tf.keras.mixed_precision.set_global_policy('mixed_float16')
# ---------------------------Create Dataset stream--------------------------------
if DATASET == 'Cityscapes':
train_ds = CityscapesDataset(num_classes=NUM_CLASSES,
split='train',
preprocessing=PREPROCESSING,
shuffle=True,
cache=CACHE,
cache_file=CACHE_FILE
)
train_ds = train_ds.create(DATA_PATH, 'all', BATCH_SIZE, NUM_TRAIN_IMAGES, augment=False, seed=SEED)
val_ds = CityscapesDataset(num_classes=NUM_CLASSES,
split='val',
preprocessing=PREPROCESSING,
shuffle=False,
cache=CACHE,
cache_file=CACHE_FILE
)
val_ds = val_ds.create(DATA_PATH, 'all', BATCH_SIZE, NUM_EVAL_IMAGES, seed=SEED)
elif DATASET == 'Mapillary':
train_ds = MapillaryDataset(height=1024, width=1856,
split='training',
preprocessing=PREPROCESSING,
version=VERSION,
shuffle=True,
)
train_ds = train_ds.create(DATA_PATH, BATCH_SIZE, NUM_TRAIN_IMAGES, augment=False, seed=SEED)
val_ds = MapillaryDataset(height=1024, width=1856,
split='validation',
preprocessing=PREPROCESSING,
version=VERSION,
shuffle=False)
val_ds = val_ds.create(DATA_PATH, BATCH_SIZE, NUM_EVAL_IMAGES, seed=SEED)
steps_per_epoch = train_ds.cardinality().numpy()
# ---------------------------------------CALLBACKS-------------------------------------------
if BACKBONE is None:
save_best_only = True
save_freq = 'epoch'
else:
save_best_only = False
save_freq = int(EPOCHS*steps_per_epoch) # save the model only at the last epoch of the main training
checkpoint_filepath = f'saved_models/{DATASET}/{MODEL_TYPE}/{MODEL_NAME}'
model_checkpoint_callback = ModelCheckpoint(filepath=checkpoint_filepath,
save_weights_only=False,
monitor='val_MeanIoU_ignore',
mode='max',
save_freq=save_freq,
save_best_only=save_best_only,
verbose=0)
#{LOGS_DIR}/
tensorboard_log_dir = f'Tensorboard_logs/{DATASET}/{MODEL_TYPE}/{MODEL_NAME}'
tensorboard_callback = TensorBoard(log_dir=tensorboard_log_dir,
histogram_freq=0,
write_graph=False,
write_steps_per_second=False)
callbacks = [model_checkpoint_callback, tensorboard_callback]
# -------------------------------------------------------------------------------------------
loss_func = eval(LOSS)
loss = loss_func()
lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=START_LR,
decay_steps=LR_DECAY_EPOCHS*steps_per_epoch,
end_learning_rate=END_LR,
power=POWER,
cycle=False,
name=None
)
optimizer_dict = {
'Adam' : Adam(lr_schedule),
'Adadelta' : Adadelta(lr_schedule),
'AdamW' : AdamW(learning_rate=lr_schedule, weight_decay=WEIGHT_DECAY),
'AdaBelief' : AdaBelief(learning_rate=lr_schedule),
'SGDW' : SGDW(learning_rate=lr_schedule, weight_decay=WEIGHT_DECAY, momentum=MOMENTUM)
}
optimizer = optimizer_dict[OPTIMIZER_NAME]
mean_iou = MeanIoU(NUM_CLASSES, name='MeanIoU', ignore_class=None)
mean_iou_ignore = MeanIoU(NUM_CLASSES, name='MeanIoU_ignore', ignore_class=IGNORE_CLASS)
metrics = [mean_iou_ignore]
# Instantiate Model
model_function = eval(MODEL_TYPE)
model = model_function(input_shape=INPUT_SHAPE,
filters=FILTERS,
num_classes=NUM_CLASSES,
output_stride=OUTPUT_STRIDE,
activation=ACTIVATION,
dropout_rate=DROPOUT_RATE,
backbone_name=BACKBONE,
freeze_backbone=True,
weights=PRETRAINED_WEIGHTS
)
model.summary()
model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
history = model.fit(train_ds,
validation_data=val_ds,
epochs=EPOCHS,
callbacks = callbacks,
verbose = 1
)
# FINE TUNE MODEL
if BACKBONE is not None:
#* After unfreezing the final backbone weights the barch size might need to be reduced to
#* prevent OOM. Re-define the dataset streams with new batch size
if DATASET == 'Cityscapes':
train_ds = CityscapesDataset(num_classes=NUM_CLASSES,
split='train',
preprocessing=PREPROCESSING,
shuffle=True,
cache=CACHE,
cache_file=CACHE_FILE
)
train_ds = train_ds.create(DATA_PATH, 'all', BATCH_SIZE-1, NUM_TRAIN_IMAGES, augment=AUGMENT, seed=SEED)
val_ds = CityscapesDataset(num_classes=NUM_CLASSES,
split='val',
preprocessing=PREPROCESSING,
shuffle=False,
cache=CACHE,
cache_file=CACHE_FILE
)
val_ds = val_ds.create(DATA_PATH, 'all', BATCH_SIZE-1, NUM_EVAL_IMAGES, seed=SEED)
elif DATASET == 'Mapillary':
train_ds = MapillaryDataset(height=1024, width=1856,
split='training',
preprocessing=PREPROCESSING,
version=VERSION,
shuffle=True,
)
train_ds = train_ds.create(DATA_PATH, BATCH_SIZE-1, NUM_TRAIN_IMAGES, augment=AUGMENT, seed=SEED)
val_ds = MapillaryDataset(height=1024, width=1856,
split='validation',
preprocessing=PREPROCESSING,
version=VERSION,
shuffle=False)
val_ds = val_ds.create(DATA_PATH, BATCH_SIZE-1, NUM_EVAL_IMAGES, seed=SEED)
# Re-define checkpoint callback to save only the best model
model_checkpoint_callback = ModelCheckpoint(filepath=checkpoint_filepath,
save_weights_only=False,
monitor='val_MeanIoU_ignore',
mode='max',
save_best_only=True,
verbose=0)
callbacks = [model_checkpoint_callback, tensorboard_callback]
# instantiate model again with the last part of the encoder (Backbone) un-frozen
model = model_function(input_shape=INPUT_SHAPE,
filters=FILTERS,
num_classes=NUM_CLASSES,
output_stride=OUTPUT_STRIDE,
activation=ACTIVATION,
dropout_rate=DROPOUT_RATE,
backbone_name=BACKBONE,
freeze_backbone=False,
unfreeze_at=UNFREEZE_AT,
)
# load the saved weights into the model to fine tune the high level features of the feature extractor
# Fine tune the encoder network with a lower learning rate
model.load_weights(checkpoint_filepath)
model.summary()
optimizer_dict = {
'Adam' : Adam(END_LR),
'Adadelta' : Adadelta(END_LR),
'AdamW' : AdamW(learning_rate=END_LR, weight_decay=WEIGHT_DECAY),
'AdaBelief' : AdaBelief(learning_rate=END_LR, weight_decay=WEIGHT_DECAY),
'SGDW' : SGDW(learning_rate=END_LR, weight_decay=WEIGHT_DECAY, momentum=MOMENTUM)
}
optimizer = optimizer_dict[OPTIMIZER_NAME]
model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
history = model.fit(train_ds,
validation_data=val_ds,
initial_epoch=EPOCHS,
epochs=FINAL_EPOCHS,
callbacks = callbacks,
verbose = 1
)
# TODO: write callback to save model trunk to avoid the following
if DATASET == 'Mapillary':
model.save_weights(f'pretrained_models/{MODEL_TYPE}/{MODEL_NAME}/model')
trunk = model.get_layer('Trunk')
trunk.save_weights(f'pretrained_models/{MODEL_TYPE}/{MODEL_NAME}/trunk')