-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
448 lines (394 loc) · 22 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from entities import *
from constants import *
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def add_pallet(rack, bay_id, pallet, access_count, shelf_id=None, log_access=False):
if pallet.category == 'Category A' and len(rack.bays[bay_id].shelves[0].pallets) < rack.bays[bay_id].shelves[
0].maxNumOfPallets:
'''
Category A items can be placed on the bottom shelves.
Here the bottom shelf is consider to be index 0.
'''
rack.bays[bay_id].shelves[0].add_pallet(pallet)
placement_time, distance_covered = calculate_placement_time(bay_id, rack.bays[bay_id].shelves[0].shelf_id)
if log_access:
access_count.loc[(access_count['Rack'] == rack.rack_id + 1) & (access_count['Bay'] == bay_id + 1), 'Access_Count'] += 1
return f"Placed pallet of {pallet.category} in rack {rack.rack_id + 1} bay {bay_id + 1} bottom shelf.", placement_time, distance_covered
elif pallet.category == 'Category B' and rack.bays[bay_id].shelves[-1].numOfPallets < rack.bays[bay_id].shelves[
-1].maxNumOfPallets:
'''
Category B items can be placed on the bottom shelves.
Here the bottom shelf is consider to be the maximum index.
'''
rack.bays[bay_id].shelves[-1].add_pallet(pallet)
placement_time, distance_covered = calculate_placement_time(bay_id, rack.bays[bay_id].shelves[-1].shelf_id)
if log_access:
access_count.loc[(access_count['Rack'] == rack.rack_id + 1) & (
access_count['Bay'] == bay_id + 1), 'Access_Count'] += 1
return f"Placed pallet of {pallet.category} in rack {rack.rack_id + 1} bay {bay_id + 1} top shelf.", placement_time, distance_covered
elif pallet.category == 'Category C':
if shelf_id is not None:
if rack.bays[bay_id].shelves[shelf_id].numOfPallets < rack.bays[bay_id].shelves[shelf_id].maxNumOfPallets:
rack.bays[bay_id].shelves[shelf_id].add_pallet(pallet)
placement_time, distance_covered = calculate_placement_time(bay_id, shelf_id)
if log_access:
access_count.loc[(access_count['Rack'] == rack.rack_id + 1) & (access_count['Bay'] == bay_id + 1), 'Access_Count'] += 1
return f"Placed pallet of {pallet.category} in rack {rack.rack_id + 1} bay {bay_id + 1} shelf {shelf_id + 1}.", placement_time, distance_covered
else:
return "No available space in bay.", 0, 0
else:
for shelf in rack.bays[bay_id].shelves:
if shelf.numOfPallets < shelf.maxNumOfPallets:
shelf.add_pallet(pallet)
placement_time, distance_covered = calculate_placement_time(bay_id, shelf.shelf_id)
if log_access:
access_count.loc[(access_count['Rack'] == rack.rack_id + 1) & (access_count['Bay'] == bay_id + 1), 'Access_Count'] += 1
return f"Placed pallet of {pallet.category} in rack {rack.rack_id + 1} bay {bay_id + 1} shelf {shelf.shelf_id + 1}.", placement_time, distance_covered
return "No available space in bay.", 0, 0
else:
return "No available space in bay.", 0, 0
def retrieve_pallet(racks, category, access_count):
rack_ids = []
bay_ids = []
shelf_ids = []
pallets = []
for rack in racks:
rack_id, bay_id, shelf_id, pallet = search_pallet_in_rack(rack, category)
rack_ids.append(rack_id)
bay_ids.append(bay_id)
shelf_ids.append(shelf_id)
pallets.append(pallet)
rack_ids = [i for i in rack_ids if i is not None]
bay_ids = [i for i in bay_ids if i is not None]
shelf_ids = [i for i in shelf_ids if i is not None]
pallets = [i for i in pallets if i is not None]
if len(bay_ids) > 1: # If there are > 1 candidate pallets
retrieval_times = []
distances_covered = []
for index in range(len(bay_ids)):
retrieval_time, distance_covered = calculate_retrieval_time(bay_ids[index], shelf_ids[index])
retrieval_times.append(retrieval_time)
distances_covered.append(distance_covered)
optimal_index = retrieval_times.index(min(retrieval_times))
racks[optimal_index].bays[bay_ids[optimal_index]].shelves[shelf_ids[optimal_index]].remove_pallet(
pallets[optimal_index])
access_count.loc[(access_count['Rack'] == racks[optimal_index].rack_id + 1) & (
access_count['Bay'] == bay_ids[optimal_index] + 1), 'Access_Count'] += 1
return (
f"Retrieved pallet of {pallets[optimal_index].category} from rack {racks[optimal_index].rack_id + 1} bay "
f"{bay_ids[optimal_index] + 1} shelf {shelf_ids[optimal_index] + 1}."), \
retrieval_times[optimal_index], distances_covered[optimal_index]
elif len(bay_ids) == 1:
retrieval_time, distance_covered = calculate_retrieval_time(bay_ids[0], shelf_ids[0])
racks[rack_ids[0]].bays[bay_ids[0]].shelves[shelf_ids[0]].remove_pallet(pallets[0])
access_count.loc[(access_count['Rack'] == rack_ids[0] + 1) & (
access_count['Bay'] == bay_ids[0] + 1), 'Access_Count'] += 1
return f"Retrieved pallet of {pallets[0].category} from rack {rack_ids[0] + 1} bay {bay_ids[0] + 1} shelf {shelf_ids[0] + 1}", retrieval_time, distance_covered
else:
return "Pallet not found."
def search_pallet_in_rack(rack, category):
if category == 'Category A':
'''
Reverse loop the bay list because of the proximity to the pick-up area.
'''
for bay in reversed(rack.bays):
for pallet in bay.shelves[0].pallets:
if pallet.category == category:
print(f"Pallet found in bay {bay.bay_id + 1} bottom shelf")
return rack.rack_id, bay.bay_id, bay.shelves[0].shelf_id, pallet
if category == 'Category B':
for bay in reversed(rack.bays):
for pallet in bay.shelves[-1].pallets:
if pallet.category == category:
print(f"Pallet found in bay {bay.bay_id + 1} bottom shelf")
return rack.rack_id, bay.bay_id, bay.shelves[-1].shelf_id, pallet
if category == 'Category C':
for bay in reversed(rack.bays):
for shelf in bay.shelves:
for pallet in shelf.pallets:
if pallet.category == category:
print(f"Pallet found in bay {bay.bay_id + 1} shelf {shelf.shelf_id + 1}")
return rack.rack_id, bay.bay_id, shelf.shelf_id, pallet
return None, None, None, None
def calculate_placement_time(bay_id, shelf_id):
distance_to_bay = DROP_OFF_TO_AISLE_DISTANCE + bay_id * BAY_WIDTH + BAY_WIDTH / 2
move_time = distance_to_bay / FORKLIFT_MOVE_SPEED
lift_time = (shelf_id * SHELF_HEIGHT) / FORKLIFT_LIFT_SPEED
total_time = move_time + lift_time + PLACEMENT_TIME
print(f"Move time: {move_time}, Lift time: {lift_time}, Total time: {total_time}")
print(f"Distance covered: {distance_to_bay}")
return total_time, distance_to_bay
def calculate_retrieval_time(bay_id, shelf_id):
distance_to_bay = PICK_UP_TO_AISLE_DISTANCE + (BAYS_PER_RACK - bay_id - 1) * BAY_WIDTH + BAY_WIDTH / 2
move_time = distance_to_bay / FORKLIFT_MOVE_SPEED
lift_time = (shelf_id * SHELF_HEIGHT) / FORKLIFT_LIFT_SPEED
total_time = move_time + lift_time + RETRIEVAL_TIME
print(f"Move time: {move_time}, Lift time: {lift_time}, Total time: {total_time}")
print(f"Distance covered: {distance_to_bay}")
return total_time, distance_to_bay
def add_preexisting_stock(racks, inputs, outputs):
diff = 0
if 'Category A' in inputs['Category'].values and 'Category A' in outputs['Category'].values:
diff = inputs['Category'].value_counts()['Category A'] - outputs['Category'].value_counts()['Category A']
if diff < 0:
pallet_count = 0
for rack in racks:
for bay in reversed(rack.bays):
for index in range(bay.shelves[0].maxNumOfPallets): # Fill the bottom shelves
if pallet_count == abs(diff):
break
else:
pallet = Europallet(category='Category A')
add_pallet(rack, bay.bay_id, pallet, None, log_access=False)
pallet_count += 1
diff = 0
if 'Category B' in inputs['Category'].values and 'Category B' in outputs['Category'].values:
diff = inputs['Category'].value_counts()['Category B'] - outputs['Category'].value_counts()['Category B']
if diff < 0:
pallet_count = 0
for rack in racks:
for bay in reversed(rack.bays):
for index in range(bay.shelves[-1].maxNumOfPallets): # Fill the top shelves
if pallet_count == abs(diff):
break
else:
pallet = Europallet(category='Category B')
add_pallet(rack, bay.bay_id, pallet, None, log_access=False)
pallet_count += 1
diff = 0
if 'Category C' in inputs['Category'].values and 'Category C' in outputs['Category'].values:
diff = inputs['Category'].value_counts()['Category C'] - outputs['Category'].value_counts()['Category C']
if diff < 0:
pallet_count = 0
for rack in racks:
for bay in reversed(rack.bays):
for shelf in [bay.shelves[1], bay.shelves[2]]: # Category C items in middle shelves.
for index in range(shelf.maxNumOfPallets):
if pallet_count == abs(diff):
break
else:
pallet = Europallet(category='Category C')
add_pallet(rack, bay.bay_id, pallet, None, log_access=False)
pallet_count += 1
def create_heatmap(access_count, placement_type):
heatmap_data = access_count.pivot(index='Bay', columns='Rack', values='Access_Count')
plt.figure(figsize=(8, 6))
sns.heatmap(heatmap_data, annot=True, fmt="g", cmap="YlGnBu", cbar=True)
plt.title(f"Warehouse Access Heatmap for {placement_type} placement.")
plt.xlabel("Rack")
plt.ylabel("Bay")
plt.gca().invert_yaxis()
plt.show()
def optimize_placement(racks, inputs_day_data, access_count):
day_placement_time = 0
day_placement_time_a = 0
day_placement_time_b = 0
day_placement_time_c = 0
day_distance_covered_placement = 0
day_distance_covered_placement_a = 0
day_distance_covered_placement_b = 0
day_distance_covered_placement_c = 0
for index, row in inputs_day_data.iterrows():
category = row['Category']
placement_time = 0
distance_covered = 0
if category == 'Category A':
for bay_id in range(int((BAYS_PER_RACK - 1) / 2) + 1, int((BAYS_PER_RACK - 1) / 2), -1): # Bay 6 to bay 5
if placement_time != 0 and distance_covered != 0:
break
for rack in racks:
pallet = Europallet(category)
_, placement_time, distance_covered = add_pallet(rack, bay_id, pallet, access_count, log_access=True)
if placement_time != 0 and distance_covered != 0:
print(_)
day_placement_time += placement_time
day_placement_time_a += placement_time
day_distance_covered_placement += distance_covered
day_distance_covered_placement_a += distance_covered
break
elif category == 'Category B':
for bay_id in range(int((BAYS_PER_RACK - 1) / 2) - 1, int((BAYS_PER_RACK - 1) / 2)): # Bay 4 to bay 5
if placement_time != 0 and distance_covered != 0:
break
for rack in racks:
pallet = Europallet(category)
_, placement_time, distance_covered = add_pallet(rack, bay_id, pallet, access_count, log_access=True)
if placement_time != 0 and distance_covered != 0:
print(_)
day_placement_time += placement_time
day_placement_time_b += placement_time
day_distance_covered_placement += distance_covered
day_distance_covered_placement_b += distance_covered
break
elif category == 'Category C':
for bay_id in range(int((BAYS_PER_RACK - 1) / 2), int((BAYS_PER_RACK - 1) / 2) - 1, -1): # Bay 5 to bay 4
if placement_time != 0 and distance_covered != 0:
break
for rack in racks:
pallet = Europallet(category)
_, placement_time, distance_covered = add_pallet(rack, bay_id, pallet, access_count, log_access=True)
if placement_time != 0 and distance_covered != 0:
print(_)
day_placement_time += placement_time
day_placement_time_c += placement_time
day_distance_covered_placement += distance_covered
day_distance_covered_placement_c += distance_covered
break
return (day_placement_time, day_placement_time_a, day_placement_time_b, day_placement_time_c,
day_distance_covered_placement,
day_distance_covered_placement_a, day_distance_covered_placement_b, day_distance_covered_placement_c)
def simulate_with_initial_placement(racks, inputs, outputs):
total_placement_time = 0
total_placement_time_a = 0
total_placement_time_b = 0
total_placement_time_c = 0
total_retrieval_time = 0
total_retrieval_time_a = 0
total_retrieval_time_b = 0
total_retrieval_time_c = 0
total_placement_distance_covered = 0
total_placement_distance_covered_a = 0
total_placement_distance_covered_b = 0
total_placement_distance_covered_c = 0
total_retrieval_distance_covered = 0
total_retrieval_distance_covered_a = 0
total_retrieval_distance_covered_b = 0
total_retrieval_distance_covered_c = 0
access_count = inputs.groupby(['Rack', 'Bay']).size().reset_index(name='Access_Count')
access_count['Rack'] = access_count['Rack'].str.replace('Rack ', '')
access_count = access_count.astype('int')
access_count['Access_Count'] = 0
print("\n\n Simulating with initial placement: \n\n")
for date, inputs_day_data in inputs.groupby(inputs['Date'].dt.date):
day_placement_time = 0
day_retrieval_time = 0
day_distance_covered_placement = 0
day_distance_covered_retrieval = 0
outputs_day_data = outputs[outputs['Date'] == inputs_day_data['Date'].iloc[0]]
add_preexisting_stock(racks, inputs_day_data, outputs_day_data)
for index, row in inputs_day_data.iterrows():
rack = int(row['Rack'].split('Rack ')[1]) # Get only the number from 'Rack X'
bay = int(row['Bay'])
category = row['Category']
pallet = Europallet(category=category)
if category == 'Category C':
shelf = row['Shelf']
_, placement_time, distance_covered = add_pallet(racks[rack - 1], bay - 1, pallet, access_count, shelf - 1,
log_access=True)
while placement_time == 0:
if bay < BAYS_PER_RACK:
bay += 1
elif bay == BAYS_PER_RACK:
bay = 1
_, placement_time, distance_covered = add_pallet(racks[rack - 1], bay - 1, pallet, access_count, log_access=True)
total_placement_time_c += placement_time
total_placement_distance_covered_c += distance_covered
else:
_, placement_time, distance_covered = add_pallet(racks[rack - 1], bay - 1, pallet, access_count, log_access=True)
while placement_time == 0:
if bay < BAYS_PER_RACK:
bay += 1
elif bay == BAYS_PER_RACK:
bay = 1
_, placement_time, distance_covered = add_pallet(racks[rack - 1], bay - 1, pallet, access_count, log_access=True)
if category == 'Category A':
total_placement_time_a += placement_time
total_placement_distance_covered_a += distance_covered
elif category == 'Category B':
total_placement_time_b += placement_time
total_placement_distance_covered_b += distance_covered
print(_)
day_placement_time += placement_time
day_distance_covered_placement += distance_covered
for index, row in outputs_day_data.iterrows():
category = row['Category']
_, retrieval_time, distance_covered = retrieve_pallet(racks, category, access_count)
print(_)
if category == 'Category A':
total_retrieval_time_a += retrieval_time
total_retrieval_distance_covered_a += distance_covered
elif category == 'Category B':
total_retrieval_time_b += retrieval_time
total_retrieval_distance_covered_b += distance_covered
elif category == 'Category C':
total_retrieval_time_c += retrieval_time
total_retrieval_distance_covered_c += distance_covered
day_retrieval_time += retrieval_time
day_distance_covered_retrieval += distance_covered
total_placement_time += day_placement_time
total_retrieval_time += day_retrieval_time
total_placement_distance_covered += day_distance_covered_placement
total_retrieval_distance_covered += day_distance_covered_retrieval
print(f"Processed data for {date}")
create_heatmap(access_count, placement_type='initial')
return (
total_placement_time, total_placement_time_a, total_placement_time_b, total_placement_time_c,
total_retrieval_time,
total_retrieval_time_a, total_retrieval_time_b, total_retrieval_time_c, total_placement_distance_covered,
total_placement_distance_covered_a, total_placement_distance_covered_b, total_placement_distance_covered_c,
total_retrieval_distance_covered, total_retrieval_distance_covered_a, total_retrieval_distance_covered_b,
total_retrieval_distance_covered_c)
def simulate_with_optimized_placement(racks, inputs, outputs):
total_placement_time = 0
total_placement_time_a = 0
total_placement_time_b = 0
total_placement_time_c = 0
total_retrieval_time = 0
total_retrieval_time_a = 0
total_retrieval_time_b = 0
total_retrieval_time_c = 0
total_placement_distance_covered = 0
total_placement_distance_covered_a = 0
total_placement_distance_covered_b = 0
total_placement_distance_covered_c = 0
total_retrieval_distance_covered = 0
total_retrieval_distance_covered_a = 0
total_retrieval_distance_covered_b = 0
total_retrieval_distance_covered_c = 0
access_count = inputs.groupby(['Rack', 'Bay']).size().reset_index(name='Access_Count')
access_count['Rack'] = access_count['Rack'].str.replace('Rack ', '')
access_count = access_count.astype('int')
access_count['Access_Count'] = 0
print("\n\n Simulating with optimized placement: \n\n")
for date, inputs_day_data in inputs.groupby(inputs['Date'].dt.date):
day_retrieval_time = 0
day_distance_covered_retrieval = 0
outputs_day_data = outputs[outputs['Date'] == inputs_day_data['Date'].iloc[0]]
add_preexisting_stock(racks, inputs_day_data, outputs_day_data)
day_placement_time, day_placement_time_a, day_placement_time_b, day_placement_time_c, day_distance_covered_placement, day_distance_covered_placement_a, day_distance_covered_placement_b, day_distance_covered_placement_c = optimize_placement(
racks, inputs_day_data, access_count)
for index, row in outputs_day_data.iterrows():
category = row['Category']
_, retrieval_time, distance_covered = retrieve_pallet(racks, category, access_count)
print(_)
if category == 'Category A':
total_retrieval_time_a += retrieval_time
total_retrieval_distance_covered_a += distance_covered
elif category == 'Category B':
total_retrieval_time_b += retrieval_time
total_retrieval_distance_covered_b += distance_covered
elif category == 'Category C':
total_retrieval_time_c += retrieval_time
total_retrieval_distance_covered_c += distance_covered
day_retrieval_time += retrieval_time
day_distance_covered_retrieval += distance_covered
total_placement_time += day_placement_time
total_placement_time_a += day_placement_time_a
total_placement_time_b += day_placement_time_b
total_placement_time_c += day_placement_time_c
total_retrieval_time += day_retrieval_time
total_placement_distance_covered += day_distance_covered_placement
total_placement_distance_covered_a += day_distance_covered_placement_a
total_placement_distance_covered_b += day_distance_covered_placement_b
total_placement_distance_covered_c += day_distance_covered_placement_c
total_retrieval_distance_covered += day_distance_covered_retrieval
print(f"Processed data for {date}")
create_heatmap(access_count, placement_type='optimized')
return (
total_placement_time, total_placement_time_a, total_placement_time_b, total_placement_time_c,
total_retrieval_time,
total_retrieval_time_a, total_retrieval_time_b, total_retrieval_time_c, total_placement_distance_covered,
total_placement_distance_covered_a, total_placement_distance_covered_b, total_placement_distance_covered_c,
total_retrieval_distance_covered, total_retrieval_distance_covered_a, total_retrieval_distance_covered_b,
total_retrieval_distance_covered_c)