-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfunctions.py
125 lines (118 loc) · 4.5 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import matplotlib as mpl
if os.environ.get('DISPLAY','') == '':
print('no display found. Using non-interactive Agg backend')
mpl.use('Agg')
import matplotlib.pyplot as plt
import scipy.io as sio
import torch
import torch.nn as nn
import numpy as np
from src.torchviz import make_dot, make_dot_from_trace
class stats:
def __init__(self, path, start_epoch):
if start_epoch is not 0:
stats_ = sio.loadmat(os.path.join(path,'stats.mat'))
data = stats_['data']
content = data[0,0]
self.trainObj = content['trainObj'][:,:start_epoch].squeeze().tolist()
self.trainTop1 = content['trainTop1'][:,:start_epoch].squeeze().tolist()
self.trainTop5 = content['trainTop5'][:,:start_epoch].squeeze().tolist()
self.valObj = content['valObj'][:,:start_epoch].squeeze().tolist()
self.valTop1 = content['valTop1'][:,:start_epoch].squeeze().tolist()
self.valTop5 = content['valTop5'][:,:start_epoch].squeeze().tolist()
if start_epoch is 1:
self.trainObj = [self.trainObj]
self.trainTop1 = [self.trainTop1]
self.trainTop5 = [self.trainTop5]
self.valObj = [self.valObj]
self.valTop1 = [self.valTop1]
self.valTop5 = [self.valTop5]
else:
self.trainObj = []
self.trainTop1 = []
self.trainTop5 = []
self.valObj = []
self.valTop1 = []
self.valTop5 = []
def _update(self, trainObj, top1, top5, valObj, prec1, prec5):
self.trainObj.append(trainObj)
self.trainTop1.append(top1.cpu().numpy())
self.trainTop5.append(top5.cpu().numpy())
self.valObj.append(valObj)
self.valTop1.append(prec1.cpu().numpy())
self.valTop5.append(prec5.cpu().numpy())
def vizNet(model, path):
model.eval()
x = torch.randn(10,3,224,224)
y = model(x)
g = make_dot(y)
g.render(os.path.join(path,'graph'), view=False)
def plot_curve(stats, path, iserr):
trainObj = np.array(stats.trainObj)
valObj = np.array(stats.valObj)
if iserr:
trainTop1 = 100 - np.array(stats.trainTop1)
trainTop5 = 100 - np.array(stats.trainTop5)
valTop1 = 100 - np.array(stats.valTop1)
valTop5 = 100 - np.array(stats.valTop5)
titleName = 'error'
else:
trainTop1 = np.array(stats.trainTop1)
trainTop5 = np.array(stats.trainTop5)
valTop1 = np.array(stats.valTop1)
valTop5 = np.array(stats.valTop5)
titleName = 'accuracy'
epoch = len(trainObj)
figure = plt.figure()
obj = plt.subplot(1,3,1)
obj.plot(range(1,epoch+1),trainObj,'o-',label = 'train')
obj.plot(range(1,epoch+1),valObj,'o-',label = 'val')
plt.xlabel('epoch')
plt.title('objective')
handles, labels = obj.get_legend_handles_labels()
obj.legend(handles[::-1], labels[::-1])
top1 = plt.subplot(1,3,2)
top1.plot(range(1,epoch+1),trainTop1,'o-',label = 'train')
top1.plot(range(1,epoch+1),valTop1,'o-',label = 'val')
plt.title('top1'+titleName)
plt.xlabel('epoch')
handles, labels = top1.get_legend_handles_labels()
top1.legend(handles[::-1], labels[::-1])
top5 = plt.subplot(1,3,3)
top5.plot(range(1,epoch+1),trainTop5,'o-',label = 'train')
top5.plot(range(1,epoch+1),valTop5,'o-',label = 'val')
plt.title('top5'+titleName)
plt.xlabel('epoch')
handles, labels = top5.get_legend_handles_labels()
top5.legend(handles[::-1], labels[::-1])
filename = os.path.join(path, 'net-train.pdf')
figure.savefig(filename, bbox_inches='tight')
plt.close()
def plot_grad_flow(named_parameters):
ave_grads = []
layers = []
for n, p in named_parameters:
if(p.requires_grad) and ("bias" not in n):
layers.append(n)
ave_grads.append(p.grad.abs().mean())
plt.plot(ave_grads, alpha=0.3, color="b")
plt.hlines(0, 0, len(ave_grads)+1, linewidth=1, color="k" )
plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical")
plt.xlim(xmin=0, xmax=len(ave_grads))
plt.xlabel("Layers")
plt.ylabel("average gradient")
plt.title("Gradient flow")
plt.grid(True)
def decode_params(input_params):
params = input_params[0]
out_params = []
_start=0
_end=0
for i in range(len(params)):
if params[i] == ',':
out_params.append(float(params[_start:_end]))
_start=_end+1
_end+=1
out_params.append(float(params[_start:_end]))
return out_params