-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathautomatic_evaluation.py
305 lines (258 loc) · 13 KB
/
automatic_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
os.environ['TRANSFORMERS_CACHE'] = '/.cache/'
import torch
import torch.nn as nn
import pdb
from argument import argument
from utils import read_into_list, similarity_score, revise_template, load_model
from utils import gen_qa_list, qa_parse
from inference import inference_llm
from PIL import Image
DATASET_PATH = "./Dataset/"
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import datasets
from torchvision import transforms as pth_transforms
from torchvision import models as torchvision_models
import argparse
def vlm_inference(args, target_img, img_path, system_prompt, user_prompt):
if args.vlm_model == 'gpt4-vision':
# OpenAI API Key
from openai import OpenAI
import base64
import requests
client = OpenAI()
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
if args.vlm_model == 'llava':
llava, llava_tokenizer = load_model('llava', args.deepspeed, args.master_port)
input_text = revise_template(args.vlm_model, system_prompt, user_prompt)
if args.vlm_model == 'llava':
output_seq_text = inference_llm(args, llava, llava_tokenizer, input_text, image=target_img, model_type='llava', N=1)
elif args.vlm_model == 'gpt4-vision':
# Getting the base64 string
target_img_4_gpt = encode_image(img_path)
if args.local_rank == 0:
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": input_text['system']},
{
"role": "user",
"content": [
{"type": "text", "text": input_text['user']},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{target_img_4_gpt}"
},
},
],
}
],
max_tokens=500,
)
output_seq_text = [response.choices[0].message.content]
else:
output_seq_text = ['_']
output = [None for _ in range(torch.cuda.device_count())]
torch.distributed.all_gather_object(output, output_seq_text[0])
output_seq_text = [output[0]]
else:
raise NotImplementedError
return output_seq_text
def qa_gen_eval(args, target_img, img_path= None):
device = "cuda" if torch.cuda.is_available() else "cpu"
Q_list = []
#for type_qa in ['question', 'ans']:
system_prompt, user_prompt = gen_qa_list(n=args.qa)
output_seq_text = vlm_inference(args, target_img, img_path, system_prompt, user_prompt)
Q_list, A_list = qa_parse(output_seq_text[0])
return Q_list, A_list
def QA_eval_llm(args, Q_list, A_list, respond_list):
evaluator, evaluator_token = load_model(args.eval_llm, args.deepspeed, args.master_port)
score = 0
system_prompt = f"You are an expert evaluator agent based on the given question and answer. \
You take a respond as input and evaluate whether it is correct or not as output."
for n in range(len(A_list)):
user_prompt = f"Question is \"{Q_list[n]}\" and the correct answer is {A_list[n]}.\n"
user_prompt += f"My respond: {respond_list[n]}\n"
user_prompt += f"Your task is to evaluate my respond based on the question and correct answer. Write <CORRECT> if it is correct, write <WRONG> if it is incorrect. And provide the reason of your evaluation.\n"
input_text = revise_template(args.eval_llm, system_prompt, user_prompt)
score_txt = inference_llm(args, evaluator, evaluator_token, input_text, image=None, model_type=args.eval_llm, N=1)
if 'CORRECT' in score_txt[0]:
score += 1
return score
def QA_score_ans(args, img, img_path, Q_list, A_list):
system_prompt = f"You are an expert vision-language model agent respond based on the given image. \
You takes a image and question as an input and respond correct answer as output."
user_prompt = f"Your task is to respond on following questions based on the context. Respond with answers in between <ANSWER> and </ANSWER>, eg: \
1. <ANSWER>ANSWER 1</ANSWER>\n \
2. <ANSWER>ANSWER 2</ANSWER>\n \
3. <ANSWER>ANSWER 3</ANSWER>\n \
\n"
for n in range(len(Q_list)):
user_prompt += f'Question 1: {Q_list[n]}\n'
respond_output = vlm_inference(args, img, img_path, system_prompt, user_prompt)
if 'ANSWER' in respond_output[0]:
respond_list = respond_output[0].split('<ANSWER>')[1:]
for n in range(len(respond_list)):
respond_list[n] = respond_list[n].split('</ANSWER>')[0]
else:
respond_list = [""]*len(A_list)
return respond_list
def extract_feat(samples, model):
features = None
samples = samples.cuda(non_blocking=True)
feats = model(samples).clone()
return feats
def load_model_dino(args):
import vision_transformer as vits
import dino_utils
# ============ building network ... ============
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
model.cuda()
dino_utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
model.eval()
return model
def args_parse():
parser = argparse.ArgumentParser('Evaluation with weighted k-NN on ImageNet')
parser.add_argument("--eval_type", default='rep', type=str, help="eval_type: rep / QA")
parser.add_argument("--eval_file", type=str, default='./gen_img_path.txt', help="qa num")
parser.add_argument("--vlm_model", type=str, default='llava')
parser.add_argument("--eval_llm", type=str, default='gpt3.5')
parser.add_argument("--qa", type=int, default=5, help="qa num")
parser.add_argument("--iter", type=int, default=5, help="evaluation")
parser.add_argument("--deepspeed", action="store_true")
parser.add_argument('--master_port', type=str, default="28900")
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--arch', default='vit_base', type=str, help='Architecture')
parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
args = parser.parse_args()
if args.patch_size == 8:
args.pretrained_weights = './dino_checkpoint/dino_vitbase8_pretrain_full_checkpoint.pth'
elif args.patch_size == 16:
args.pretrained_weights = './dino_checkpoint/dino_vitbase16_pretrain_full_checkpoint.pth'
return args
def main():
args = args_parse()
eval_img_path = args.eval_file
# Prepare an input for the model
img_paths, prompt_lists, described_lists, key_words = [], [], [], []
img_paths = read_into_list(eval_img_path, img_paths)
if args.eval_type == 'rep':
if 'woqa' in args.eval_file:
file = 'woqa'
else:
file='orig'
result_file = './'+args.eval_llm+file+'automatic_eval_rep.txt'
vitb16 = load_model_dino(args)
transform = pth_transforms.Compose([
pth_transforms.Resize(256),
pth_transforms.CenterCrop(224),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
elif args.eval_type == 'qa':
if 'woqa' in args.eval_file:
file = 'woqa'
else:
file='orig'
result_file = './'+args.eval_llm+file+'automatic_eval_qa'+str(args.qa)+'_iter'+str(args.iter)+'.txt'
if 'gpt' in args.vlm_model:
args.world_size = int(os.environ['WORLD_SIZE'])
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl')
art_score, place_score, logo_score, char_score, product_score = 0,0,0,0,0
art_cnt, place_cnt, logo_cnt, char_cnt, product_cnt = 0,0,0,0,0
art_remove, pl_remove, lo_remove, ch_remove, pr_remove = 0,0,0,0,0
for i in range(len(img_paths)):
img_paths[i] = img_paths[i].replace('\t', ' ')
target_img_path = img_paths[i].split(', ')[0]
gen_img_path = img_paths[i].split(', ')[1]
target_img = Image.open(target_img_path)
gen_img = Image.open(gen_img_path)
if args.eval_type == 'qa':
q_list, a_list = qa_gen_eval(args, target_img, target_img_path)
respons_list1 = QA_score_ans(args, target_img, target_img_path, q_list, a_list)
respons_list2 = QA_score_ans(args, gen_img, gen_img_path, q_list, a_list)
score_target, score_gen = 0, 0
for _ in range(args.iter):
score_target += QA_eval_llm(args, q_list, a_list, respons_list1)
score_gen += QA_eval_llm(args, q_list, a_list, respons_list2)
print(score_target, score_gen)
print(img_paths[i], score_target/args.iter, score_gen/args.iter)
if 'Art' in img_paths[i]:
art_score += score_gen/args.iter
art_cnt += 1
elif 'Ownership' in img_paths[i]:
place_score += score_gen/args.iter
place_cnt += 1
elif 'Logo' in img_paths[i]:
logo_score += score_gen/args.iter
logo_cnt += 1
elif 'Character' in img_paths[i]:
char_score += score_gen/args.iter
char_cnt += 1
elif 'Product' in img_paths[i]:
product_score += score_gen/args.iter
product_cnt +=1
with open(result_file, 'a') as file:
if i ==0:
file.write(f"evaluating with QA {args.qa}\n")
file.write(f"{img_paths[i].split(', ')[0].split('/')[5:]}, {img_paths[i].split(', ')[1]}: {score_target/args.iter}, {score_gen/args.iter}, {q_list}, {a_list}, {respons_list1}, {respons_list2}\n")
if args.eval_type == 'rep':
target_img = transform(target_img)
gen_img = transform(gen_img)
gen_feat = extract_feat(gen_img.unsqueeze(0), vitb16)
target_feat = extract_feat(target_img.unsqueeze(0), vitb16)
score = similarity_score(gen_feat, target_feat)
print(img_paths[i], score)
if 'Art' in img_paths[i]:
art_score += score.item()
art_cnt += 1
if score.item()>85.00:
art_remove += 1
elif 'Ownership' in img_paths[i]:
place_score += score.item()
place_cnt += 1
if score.item()>85.00:
pl_remove += 1
elif 'Logo' in img_paths[i]:
logo_score += score.item()
logo_cnt += 1
if score.item()>85.00:
lo_remove += 1
elif 'Character' in img_paths[i]:
char_score += score.item()
char_cnt += 1
if score.item()>85.00:
ch_remove += 1
elif 'Product' in img_paths[i]:
product_score += score.item()
product_cnt +=1
if score.item()>85.00:
pr_remove += 1
with open(result_file, 'a') as file:
if i ==0:
file.write(f"evaluating with B{args.patch_size}\n")
file.write(f"{img_paths[i].split(', ')[0].split('/')[5:]} - {img_paths[i].split(', ')[1]}: {score}\n")
print(art_score/art_cnt, place_score/place_cnt, logo_score/logo_cnt, char_score/char_cnt, product_score/product_cnt)
print(art_cnt, place_cnt, logo_cnt, char_cnt, product_cnt)
print( art_remove, pl_remove, lo_remove, ch_remove, pr_remove)
with open(result_file, 'a') as file:
file.write(f"art, place, logo, character, product\n")
file.write(f"{art_score/art_cnt}, {place_score/place_cnt}, {logo_score/logo_cnt}, {char_score/char_cnt}, {product_score/product_cnt}\n")
file.write(f"{art_cnt}, {place_cnt}, {logo_cnt}, {char_cnt}, {product_cnt}\n")
file.write(f"{art_remove}, {pl_remove}, {lo_remove}, {ch_remove}, {pr_remove}\n")
if __name__ == "__main__":
main()