-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
74 lines (71 loc) · 2.44 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
def get_optimizer(config, parameters):
if config.optimizer_type == "adam":
optimizer = torch.optim.Adam(
parameters,
lr=config.learning_rate,
# betas=(0.9, 0.999),
# eps=1e-08,
# weight_decay=1e-5,
)
elif config.optimizer_type == "adamw":
optimizer = torch.optim.AdamW(
parameters,
lr=config.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-5,
)
elif config.optimizer_type == "rmsprop":
optimizer = torch.optim.RMSprop(
parameters,
lr=config.learning_rate,
alpha=0.99,
eps=1e-08,
weight_decay=0,
momentum=0
)
elif config.optimizer_type == "sgd":
optimizer = torch.optim.SGD(
parameters,
lr=config.learning_rate,
momentum=0.9,
weight_decay=0.0005
)
else:
raise ValueError("Invalid optimizer type")
return optimizer
def get_scheduler(optimizer, config):
scheduler_type = config.scheduler_type
if scheduler_type == "onecycle":
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=config.learning_rate,
steps_per_epoch=config.steps_per_epoch,
epochs=config.epochs,
pct_start=0.00,
anneal_strategy="cos",
)
elif scheduler_type == "linear":
warmup_epochs = 1
scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[
torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=0.1, total_iters=warmup_epochs),
torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.0, total_iters=config.epochs - warmup_epochs)
],
milestones=[warmup_epochs]
)
elif scheduler_type == "cosine":
warmup_epochs = 1
scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[
torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=0.1, total_iters=warmup_epochs),
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config.epochs - warmup_epochs, eta_min=0)
],
milestones=[warmup_epochs]
)
else:
raise ValueError("Invalid scheduler type")
return scheduler