-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
416 lines (305 loc) · 15.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from networks.vision_transformer import SwinUnet
from networks.vit_seg_modeling import VisionTransformer as ViT_seg
from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
from networks.UNet import U_Net, R2U_Net, AttU_Net, NestedUNet
from networks.YourNet import Your_Net
from networks.GT_UNet import GT_U_Net
from networks.model.BiSeNet import BiSeNet
from networks.model.BiSeNetV2 import BiSeNetV2
from networks.model.DDRNet import DDRNet
from networks.model.DeeplabV3Plus import Deeplabv3plus_res50
from networks.model.FCN_ResNet import FCN_ResNet
from networks.model.HRNet import HighResolutionNet
from networks.SegNet import SegNet
import torch.utils.data as data
import json
import cv2
from PIL import Image
import SimpleITK as sitk
from torchvision import transforms
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import DiceLoss
import torch.nn as nn
import torch.optim as optim
from networks.swin_config import get_swin_config
import requests
import matplotlib.pyplot as plt
import shutil
from logHelper import setup_logger
from config import output_file, parse_args
import albumentations as A
args = parse_args(type='train')
def calculate_dice(pred, gt):
# 用于计算 Dice 相似系数
intersection = np.logical_and(pred, gt).sum()
union = pred.sum() + gt.sum()
if union == 0:
return 1.0 # 如果两者都是空集,Dice 应为 1
return 2 * intersection / union
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0 and gt.sum() > 0:
dice = calculate_dice(pred, gt)
return dice
elif pred.sum() > 0 and gt.sum() == 0:
return 1
else:
return 0
def download_model(url, destination):
chunk_size = 8192 # Size of each chunk in bytes
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(destination, "wb") as file:
for chunk in response.iter_content(chunk_size=chunk_size):
file.write(chunk)
print("Weights downloaded successfully.")
else:
print("Failed to download file. Status code:", response.status_code)
class DynamicDataset(data.Dataset):
def __init__(self, img_path, gt_path, size=None, augmentations=None):
self.img_name = os.listdir(img_path)
self.size = size
self.img_path = img_path
self.gt_path = gt_path
self.augmentations = augmentations
def __getitem__(self, item):
imagename = self.img_name[item]
img_path = os.path.join(self.img_path, imagename)
gt_path = os.path.join(self.gt_path, imagename)
file_end = imagename.split('.')[-1]
if file_end in ['png']:
npimg = Image.open(img_path)
if npimg.mode == 'L': # 'L' 模式表示灰度图像
npimg = np.array(npimg) / 255.0 # 保持为单通道
npimg = np.expand_dims(npimg, axis=0) # 增加一个维度作为通道
else:
npimg = npimg.convert('RGB')
npimg = np.array(npimg) / 255.0
npimg = npimg.transpose((2, 0, 1))
npgt = Image.open(gt_path)
npgt = np.array(npgt)
elif file_end in ['gz', 'nii.gz', 'nii']:
npimg = sitk.ReadImage(img_path)
npimg = sitk.GetArrayFromImage(npimg)
npgt = sitk.ReadImage(gt_path)
npgt = sitk.GetArrayFromImage(npgt)
npimg = np.expand_dims(npimg, axis=0)
if self.augmentations:
augmented = self.augmentations(image=npimg, mask=npgt)
npimg = augmented['image'].copy()
npgt = augmented['mask'].copy()
ori_shape = npimg.shape
npgt = np.expand_dims(npgt, axis=0)
npimg = torch.from_numpy(npimg)
npgt = torch.from_numpy(npgt)
if self.size is not None:
resize = transforms.Resize(size=(self.size, self.size), antialias=None)
npimg = resize(npimg)
npgt = resize(npgt)
else:
adapt_size = transforms.Resize(size=(int(npimg.shape[1] / 64 + 1) * 64, int(npimg.shape[2] / 64 + 1) * 64),
antialias=None)
npimg = adapt_size(npimg)
npgt = adapt_size(npgt)
npgt = torch.squeeze(npgt)
return npimg, npgt, imagename, ori_shape
def __len__(self):
size = int(len(self.img_name))
return size
def format_progress_message(iteration, total):
progress_percentage = (iteration / total) * 100
progress_bar_length = int(50 * iteration // total)
progress_bar = '#' * progress_bar_length + '-' * (50 - progress_bar_length)
return f"{progress_percentage:3.0f}%|{progress_bar}| {iteration}/{total}"
def train(batch_size=4, max_epochs=200, base_lr=0.01, seed=1234, n_gpu=1, model_name='swinunet'):
data_json_file = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'dataset.json')
with open(data_json_file) as f:
json_data = json.load(f)
num_classes = json_data['label_class_num']
in_channels = json_data['img_channel']
args.img_size = json_data['imgae_size']
#data augmentation
# body: JSON.stringify({ Blur:Blur, blur_limit_min_Blur:blur_limit_min_Blur, blur_limit_max_Blur:blur_limit_max_Blur, RandomBrightnessContrast:RandomBrightnessContrast, brightness_limit_min:brightness_limit_min, brightness_limit_max:brightness_limit_max, contrast_limit_min:contrast_limit_min, contrast_limit_max:contrast_limit_max, RandomRotate90:RandomRotate90, VerticalFlip:VerticalFlip, HorizontalFlip:HorizontalFlip, dataset:dataset })
RandomBrightnessContrast = json_data['RandomBrightnessContrast']
brightness_limit_min = json_data['brightness_limit_min']
brightness_limit_max = json_data['brightness_limit_max']
contrast_limit_min = json_data['contrast_limit_min']
contrast_limit_max = json_data['contrast_limit_max']
RandomRotate90 = json_data['RandomRotate90']
VerticalFlip = json_data['VerticalFlip']
HorizontalFlip = json_data['HorizontalFlip']
augmentations = None
'''A.Compose([
A.RandomBrightnessContrast(p=0.5, brightness_limit=(brightness_limit_min, brightness_limit_max),
contrast_limit=(contrast_limit_min, contrast_limit_max)) if RandomBrightnessContrast else A.NoOp(),
A.RandomRotate90(p=0.5) if RandomRotate90 else A.NoOp(),
A.VerticalFlip(p=0.5) if VerticalFlip else A.NoOp(),
A.HorizontalFlip(p=0.5) if HorizontalFlip else A.NoOp()
])'''
args.seed = seed
args.max_epochs = max_epochs
args.base_lr = base_lr
args.batch_size = batch_size
args.n_gpu = n_gpu
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
output_folder = os.path.join(os.environ['medseg_results'], os.environ['current_dataset'], os.environ['MODEL_NAME'])
os.makedirs(output_folder, exist_ok=True)
imageTr_path = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'imagesTr')
labelTr_path = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'labelsTr')
imageVal_path = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'imagesVal')
labelVal_path = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'labelsVal')
imageTs_path = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'imagesTs')
labelTs_path = os.path.join(os.environ['medseg_raw'], os.environ['current_dataset'], 'labelsTs')
model_name = os.environ['MODEL_NAME']
print(model_name)
if model_name == 'unet':
model = U_Net(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'transunet':
download_url = 'https://huggingface.co/kenton-li/nnSAM/resolve/main/R50%2BViT-B_16.npz'
vit_name = 'R50-ViT-B_16'
config_vit = CONFIGS_ViT_seg[vit_name]
config_vit.n_classes = num_classes
args.img_size = 224
args.vit_patches_size = 16
config_vit.n_skip = 3
config_vit.pretrained_path = './networks/R50+ViT-B_16.npz'
if not os.path.exists(config_vit.pretrained_path):
download_model(download_url, config_vit.pretrained_path)
if vit_name.find('R50') != -1:
config_vit.patches.grid = (
int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size))
model = ViT_seg(config_vit, img_size=224, num_classes=num_classes).to(device)
model.load_from(weights=np.load('networks/R50+ViT-B_16.npz'))
elif model_name == 'swinunet':
args.img_size = 224
args.cfg = './networks/swin_tiny_patch4_window7_224_lite.yaml'
args.opts = None
swin_config = get_swin_config(args)
model = SwinUnet(swin_config, img_size=224, num_classes=num_classes).to(device)
# url = "https://drive.google.com/uc?id=1TyMf0_uvaxyacMmVzRfqvLLAWSOE2bJR"
url = 'https://huggingface.co/kenton-li/nnSAM/resolve/main/swin_tiny_patch4_window7_224.pth'
output = swin_config.MODEL.PRETRAIN_CKPT
if not os.path.exists(output):
download_model(url, output)
# gdown.download(url, output, quiet=False)
model.load_from(swin_config)
elif model_name == 'unetpp':
model = NestedUNet(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'attunet':
model = AttU_Net(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'r2unet':
model = R2U_Net(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'gtunet':
model = GT_U_Net(in_ch=in_channels, out_ch=num_classes).to(device)
args.img_size = 256
elif model_name == 'bisenet':
model = BiSeNet(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'ddrnet':
model = DDRNet(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'deeplabv3plus':
model = Deeplabv3plus_res50(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'hrnet':
model = HighResolutionNet(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'segnet':
model = SegNet(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'fcnresnet':
model = FCN_ResNet(in_ch=in_channels, out_ch=num_classes).to(device)
elif model_name == 'yournet':
model = Your_Net(in_ch=in_channels, out_ch=num_classes).to(device)
else:
raise NotImplementedError(f"model_name {model_name} not supported")
logger = setup_logger("training_logger", output_file=output_file)
logger.info("Process started")
logger.info(str(args))
base_lr = args.base_lr
batch_size = args.batch_size * args.n_gpu
db_train = DynamicDataset(img_path=imageTr_path, gt_path=labelTr_path, size=args.img_size, augmentations=augmentations)
db_val = DynamicDataset(img_path=imageVal_path, gt_path=labelVal_path, size=args.img_size)
trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, drop_last=True)
validloader = DataLoader(db_val, batch_size=1, shuffle=False, num_workers=2, pin_memory=True, drop_last=True)
if args.n_gpu > 1:
model = nn.DataParallel(model)
model.train()
ce_loss = CrossEntropyLoss()
dice_loss = DiceLoss(num_classes)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
iter_num = 0
max_epoch = args.max_epochs
max_iterations = args.max_epochs * len(trainloader) # max_epoch = max_iterations // len(trainloader) + 1
logger.info("{} iterations per epoch. {} max iterations ".format(len(trainloader), max_iterations))
best_performance = 0.0
val_dice_scores = []
epoch_numbers = []
for epoch_num in range(max_epoch):
for i_batch, (img, label, img_name, ori_shape) in enumerate(trainloader):
image_batch, label_batch = img, label
image_batch, label_batch = image_batch.to(device), label_batch.to(device)
image_batch = image_batch.float()
outputs = model(image_batch)
loss_ce = ce_loss(outputs, label_batch[:].long())
loss_dice = dice_loss(outputs, label_batch, softmax=True)
loss = 0.5 * loss_ce + 0.5 * loss_dice
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
iter_num = iter_num + 1
progress_message = format_progress_message(epoch_num + 1, max_epoch)
logger.info(progress_message)
save_interval = 5
if (epoch_num) % save_interval == 0:
metric_list = []
model.eval()
for i_batch, (img, label, img_name, ori_shape) in enumerate(validloader):
image_batch, label_batch = img, label
image_batch = image_batch.to(device)
image_batch = image_batch.float()
outputs = model(image_batch)
outputs = torch.nn.functional.interpolate(outputs, size=(ori_shape[-2], ori_shape[-1]), mode='nearest')
pred = outputs.data.max(1)[1].squeeze_(1).squeeze_(0).cpu().numpy().astype(np.uint8)
label_batch = torch.nn.functional.interpolate(label_batch.unsqueeze(0),
size=(ori_shape[-2], ori_shape[-1]),
mode='nearest').squeeze_(0).squeeze_(0).cpu().numpy().astype(np.uint8)
each_metric = []
for i in range(1, num_classes):
each_metric.append(calculate_metric_percase(pred == i, label_batch == i))
dice = sum(each_metric) / len(each_metric)
metric_list.append(dice)
model.train()
performance = sum(metric_list) / len(metric_list)
val_dice_scores.append(performance)
epoch_numbers.append(epoch_num)
logger.info('epoch %d : mean_dice : %f' % (epoch_num, performance))
# Plot validation metrics
plt.figure(figsize=(10, 10))
plt.title('Validation Dice Score over Epochs', fontsize=20)
plt.xlabel('Epochs', fontsize=20)
plt.ylabel('Dice Score', fontsize=20)
plt.plot(epoch_numbers, val_dice_scores)
plt.xticks(epoch_numbers)
plt.savefig(os.path.join(output_folder, 'progress.png'))
if performance > best_performance:
best_performance = performance
save_mode_path = os.path.join(output_folder, 'checkpoint_final.pth')
torch.save(model.state_dict(), save_mode_path)
logger.info("save model to {}".format(save_mode_path))
logger.info("Training Process finished")
if __name__ == '__main__':
train(batch_size=args.batch_size, max_epochs=args.max_epochs, base_lr=args.base_lr, seed=args.seed, n_gpu=args.n_gpu, model_name=os.environ['MODEL_NAME'])