-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcompile_irera.py
309 lines (281 loc) · 10.4 KB
/
compile_irera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(".", "local_cache")
from dspy import Models
from src.data_loaders import load_data
from src.programs import IreraConfig, InferRetrieveRank
from src.optimizer import supported_optimizers
from src.experiment import Experiment
from src.evaluators import create_evaluators
import argparse
def compile_irera(
dataset_name: str,
retriever_model_name: str,
infer_signature_name: str,
infer_student_model_name: str,
infer_teacher_model_name: str,
rank_signature_name: str,
rank_student_model_name: str,
rank_teacher_model_name: str,
infer_compile: bool,
infer_compile_metric_name: str,
rank_skip: bool,
rank_compile: bool,
rank_compile_metric_name: str,
prior_A: int,
rank_topk: int,
do_validation: bool,
do_test: bool,
prior_path: str,
ontology_path: str,
ontology_name: str,
optimizer_name: str,
):
# Create config
config = IreraConfig(
infer_signature_name=infer_signature_name,
rank_signature_name=rank_signature_name,
prior_A=prior_A,
prior_path=prior_path,
rank_topk=rank_topk,
rank_skip=rank_skip,
ontology_path=ontology_path,
ontology_name=ontology_name,
retriever_model_name=retriever_model_name,
optimizer_name=optimizer_name,
)
# load data (all of these files needed for the config could be dumped separately in one folder)
(
train_examples,
validation_examples,
test_examples,
_,
_,
_,
) = load_data(dataset_name)
# create program
program = InferRetrieveRank(config)
# set program students
modules_to_lms = {
"infer_retrieve.infer": {
"teacher": Models.get_lm(infer_teacher_model_name),
"student": Models.get_lm(infer_student_model_name),
},
"rank": {
"teacher": Models.get_lm(rank_teacher_model_name),
"student": Models.get_lm(rank_student_model_name),
},
}
program.infer_retrieve.infer.cot.lm = modules_to_lms["infer_retrieve.infer"][
"student"
]
program.rank.cot.lm = modules_to_lms["rank"]["student"]
# create optimizer
optimizer_class = supported_optimizers[config.optimizer_name]
optimizer_kwargs = {
"modules_to_lms": modules_to_lms,
"infer_compile": infer_compile,
"infer_compile_metric_name": infer_compile_metric_name,
"rank_compile": rank_compile,
"rank_compile_metric_name": rank_compile_metric_name,
}
optimizer = optimizer_class(**optimizer_kwargs)
# Optimize
program = optimizer.optimize(
program, train_examples, validation_examples=validation_examples
)
# Validate / Test
if do_validation:
print("validating final program...")
validation_evaluators = create_evaluators(validation_examples)
validation_rp50 = validation_evaluators["rp50"](program)
validation_rp10 = validation_evaluators["rp10"](program)
validation_rp5 = validation_evaluators["rp5"](program)
if do_test:
print("testing final program...")
test_evaluators = create_evaluators(test_examples)
test_rp10 = test_evaluators["rp10"](program)
test_rp5 = test_evaluators["rp5"](program)
if do_validation:
print("Final program validation_rp50: ", validation_rp50)
print("Final program validation_rp10: ", validation_rp10)
print("Final program validation_rp5: ", validation_rp5)
if do_test:
print("Final program test_rp10: ", test_rp10)
print("Final program test_rp5: ", test_rp5)
exp = Experiment(
dataset_name=dataset_name,
program_name="infer-retrieve-rank",
infer_student_model_name=infer_student_model_name,
infer_teacher_model_name=infer_teacher_model_name,
rank_student_model_name=rank_student_model_name,
rank_teacher_model_name=rank_teacher_model_name,
infer_compile=infer_compile,
infer_compile_metric_name=infer_compile_metric_name,
rank_compile=rank_compile,
rank_compile_metric_name=rank_compile_metric_name,
validation_rp5=validation_rp5 if do_validation else None,
validation_rp10=validation_rp10 if do_validation else None,
validation_rp50=validation_rp50 if do_validation else None,
test_rp5=test_rp5 if do_test else None,
test_rp10=test_rp10 if do_test else None,
program_state=program.dump_state(),
optimizer_name=optimizer_name,
)
return exp, program
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Compile and evaluate Infer-Retrieve-Rank on an extreme multi-label classification (XMC) dataset."
)
# Add arguments
parser.add_argument(
"--lm_config_path",
type=str,
help="Specify the json containing the LM configs",
)
parser.add_argument(
"--dataset_name",
type=str,
help="Specify the dataset",
)
parser.add_argument(
"--retriever_model_name",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="Specify the retriever model name (default: sentence-transformers/all-mpnet-base-v2)",
)
parser.add_argument("--infer_signature_name", type=str)
parser.add_argument("--rank_signature_name", type=str)
parser.add_argument("--infer_student_model_name", type=str)
parser.add_argument("--infer_teacher_model_name", type=str)
parser.add_argument("--rank_student_model_name", type=str)
parser.add_argument("--rank_teacher_model_name", type=str)
parser.add_argument(
"--no_infer_compile",
action="store_true",
help="Specify if the Infer module should not be compiled (default: False)",
)
parser.add_argument(
"--no_rank",
action="store_true",
help="Specify if the Rank module should be ablated (default: False)",
)
parser.add_argument(
"--no_rank_compile",
action="store_true",
help="Specify if the Rank module should not be compiled (default: False)",
)
parser.add_argument(
"--infer_compile_metric_name",
default="rp10",
help="Specify for which metric the system should be compiled (default: rp10)",
)
parser.add_argument(
"--rank_compile_metric_name",
default="rp10",
help="Specify for which metric the system should be compiled (default: rp10)",
)
parser.add_argument(
"--prior_A",
default=0,
type=int,
help="Specify influence of prior statistics on predicting reranking (default: 0)",
)
parser.add_argument(
"--rank_topk",
default=50,
type=int,
help="Specify how many the top k options that are input to the Rank module for reranking (default: 50)",
)
parser.add_argument(
"--do_validation",
action="store_true",
help="Specify if validation results need to be calculated (default: False)",
)
parser.add_argument(
"--do_test",
action="store_true",
help="Specify if test results need to be calculated (default: False)",
)
parser.add_argument(
"--prior_path", type=str, help="Path to the JSON file containing prior data."
)
parser.add_argument("--ontology_path", type=str, help="Path to the ontology file.")
parser.add_argument("--ontology_name", type=str, help="Name of the ontology.")
parser.add_argument("--optimizer_name", type=str, help="Name of the ontology.")
# parser.add_argument(
# "--max_windows",
# default=1,
# type=int,
# help="Specify total amount of chunking windows to use (default: 1)",
# )
# Parse the command-line arguments
args = parser.parse_args()
# NOTE: use a config object.
lm_config_path = args.lm_config_path
dataset_name = args.dataset_name
retriever_model_name = args.retriever_model_name
infer_signature_name = args.infer_signature_name
infer_student_model_name = args.infer_student_model_name
infer_teacher_model_name = args.infer_teacher_model_name
rank_signature_name = args.rank_signature_name
rank_student_model_name = args.rank_student_model_name
rank_teacher_model_name = args.rank_teacher_model_name
infer_compile = not args.no_infer_compile
infer_compile_metric_name = args.infer_compile_metric_name
rank_skip = args.no_rank
rank_compile = not args.no_rank_compile
rank_compile_metric_name = args.rank_compile_metric_name
prior_A = args.prior_A
rank_topk = args.rank_topk
do_validation = args.do_validation
do_test = args.do_test
prior_path = args.prior_path
ontology_path = args.ontology_path
ontology_name = args.ontology_name
optimizer_name = args.optimizer_name
print(f"dataset_name: ", dataset_name)
print(f"retriever_model_name: ", retriever_model_name)
print(f"infer_signature_name: ", infer_signature_name)
print(f"infer_student_model_name: ", infer_student_model_name)
print(f"infer_teacher_model_name: ", infer_teacher_model_name)
print(f"rank_signature_name: ", rank_signature_name)
print(f"rank_student_model_name: ", rank_student_model_name)
print(f"rank_teacher_model_name: ", rank_teacher_model_name)
print(f"infer_compile: ", infer_compile)
print(f"infer_compile_metric_name: ", infer_compile_metric_name)
print(f"rank_skip: ", rank_skip)
print(f"rank_compile: ", rank_compile)
print(f"rank_compile_metric_name: ", rank_compile_metric_name)
print(f"prior_A: ", prior_A)
print(f"rank_topk: ", rank_topk)
print(f"do_validation: ", do_validation)
print(f"do_test: ", do_test)
print(f"prior_path: ", prior_path)
print(f"ontology_path: ", ontology_path)
print(f"ontology_name: ", ontology_name)
print(f"optimizer_name: ", optimizer_name)
Models(config_path=lm_config_path)
experiment, program = compile_irera(
dataset_name,
retriever_model_name,
infer_signature_name,
infer_student_model_name,
infer_teacher_model_name,
rank_signature_name,
rank_student_model_name,
rank_teacher_model_name,
infer_compile,
infer_compile_metric_name,
rank_skip,
rank_compile,
rank_compile_metric_name,
prior_A,
rank_topk,
do_validation,
do_test,
prior_path,
ontology_path,
ontology_name,
optimizer_name,
)
experiment.save("./results")