-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loaders.py
138 lines (120 loc) · 4.29 KB
/
data_loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import random
import numpy as np
import librosa
import torch
import random
from tqdm import tqdm
from torch.utils.data import Dataset
def traverse_dir(
root_dir,
extension,
amount=None,
str_include=None,
str_exclude=None,
is_pure=False,
is_sort=False,
is_ext=True):
file_list = []
cnt = 0
for root, _, files in os.walk(root_dir):
for file in files:
if file.endswith(extension):
# path
mix_path = os.path.join(root, file)
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
# amount
if (amount is not None) and (cnt == amount):
if is_sort:
file_list.sort()
return file_list
# check string
if (str_include is not None) and (str_include not in pure_path):
continue
if (str_exclude is not None) and (str_exclude in pure_path):
continue
if not is_ext:
ext = pure_path.split('.')[-1]
pure_path = pure_path[:-(len(ext)+1)]
file_list.append(pure_path)
cnt += 1
if is_sort:
file_list.sort()
return file_list
def get_data_loaders(args):
data_train = AudioDataset(
args.data.train_path, args.data.train_frames)
loader_train = torch.utils.data.DataLoader(
data_train ,
batch_size=args.train.batch_size,
shuffle=True,
num_workers=args.train.num_workers,
persistent_workers=(args.train.num_workers > 0),
pin_memory=True
)
data_valid = AudioDataset(
args.data.valid_path, args.data.train_frames)
loader_valid = torch.utils.data.DataLoader(
data_valid,
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=True
)
return loader_train, loader_valid
class AudioDataset(Dataset):
def __init__(self, path_root, data_lengths):
super().__init__()
self.path_root = path_root
self.paths = traverse_dir(
os.path.join(path_root, 'audio'),
extension='wav',
is_pure=True,
is_sort=True,
is_ext=False
)
self.data_buffer = {}
self.max_mfcc_length = data_lengths
self.max_label_length = data_lengths
print('Load all the data from :', path_root)
for name in tqdm(self.paths, total=len(self.paths)):
path_mfcc = os.path.join(self.path_root, 'mfcc', name) + '.npy'
mfcc = np.load(path_mfcc)
mfcc = torch.from_numpy(mfcc).float()
path_label = os.path.join(self.path_root, 'label', name) + '.npy'
label = np.load(path_label)
label = torch.from_numpy(label).float()
self.data_buffer[name] = {
'mfcc': mfcc,
'label': label,
}
def __getitem__(self, file_idx):
name = self.paths[file_idx]
data_buffer = self.data_buffer[name]
# get item
return self.get_data(name, data_buffer)
def get_data(self, name, data_buffer):
# load mfcc
mfcc = data_buffer.get('mfcc')
# pad mfcc to max_mfcc_length using the last frame if needed
pad_size = self.max_mfcc_length - mfcc.size(1)
if pad_size > 0:
# Repeat the last frame instead of padding with zeros
pad = mfcc[:, -1:].repeat(1, pad_size)
mfcc = torch.cat((mfcc, pad), dim=1)
elif pad_size < 0:
mfcc = mfcc[:, :self.max_mfcc_length]
# load label
label = data_buffer.get('label')
# pad label to max_label_length using the last value if needed
pad_size = self.max_label_length - label.size(0)
if pad_size > 0:
# Repeat the last value instead of padding with -1
pad = label[-1:].repeat(pad_size)
label = torch.cat((label, pad), dim=0)
elif pad_size < 0:
label = label[:self.max_label_length]
return dict(mfcc=mfcc, label=label, name=name)
def __len__(self):
# 返回批次数量
return len(self.data_buffer)