-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpert_JGBA_attack.py
388 lines (312 loc) · 14.5 KB
/
pert_JGBA_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from data_utils.ModelNetDataLoader import ModelNetDataLoader
from data_utils.AttackModelNetLoader import AttackModelNetLoader
from data_utils.AttackScanNetLoader import AttackScanNetLoader
from data_utils.ScanNetDataLoader import ScanNetDataLoader
import argparse
import numpy as np
import os
import torch
import datetime
import logging
from pathlib import Path
from tqdm import tqdm
import sys
import provider
import importlib
import shutil
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import normalize
from utils import get_backbone # get_cifar_training, get_cifar_test
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
clip_min = -1.0
clip_max = 1.0
TOP_K = 10
NUM_STD = 1.0
def log_string(str):
logger.info(str)
print(str)
def log_only_string(str):
logger.info(str)
# print(str)
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('PointNet')
parser.add_argument('--model', default='pointnet_cls', help='model name [default: pointnet_cls]')
parser.add_argument('--eps', default=0.1, type=float, help='learning rate in training [default: 0.1]')
parser.add_argument('--eps_iter', default=0.01, type=float, help='learning rate in training [default: 0.01]')
parser.add_argument('--learning_rate', default=0.1, type=float, help='learning rate in training [default: 0.1]')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device [default: 0]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]')
parser.add_argument('--log_dir', type=str, default=None, help='experiment root')
parser.add_argument('--normal', action='store_true', default=False, help='Whether to use normal information [default: False]')
parser.add_argument('--file_affix', type=str, default='', help='log file/save folder affix')
parser.add_argument('--dataset', default='ModelNet40', help='dataset name [default: ModelNet40]')
parser.add_argument('--num_cls', type=int, default=40, help='Number of classes [default: 40]')
parser.add_argument('--n', type=int, default=40, help='step')
parser.add_argument('--backbone', default='resnet50', help='backbone network name [default: resnet50]')
parser.add_argument('--dim', type=int, default=128, help='size of final 2d image [default: 128]')
parser.add_argument('--num_attack', type=int, default=-1, help='number of samples to attack [default: -1]')
parser.add_argument('--attack', type=str, default='JGBA', help='[JGBA, FGSM]')
return parser.parse_args()
def test(model, loader, num_class=40):
mean_correct = []
class_acc = np.zeros((num_class,3))
for j, data in tqdm(enumerate(loader), total=len(loader)):
points, target = data
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
classifier = model.eval()
pred, _ = classifier(points)
pred_choice = pred.data.max(1)[1]
for cat in np.unique(target.cpu()):
# resolve tensor cannot be (target==cat) eq() to a numpy bug
cat = cat.item()
classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum()
class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0])
class_acc[cat,1]+=1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item()/float(points.size()[0]))
class_acc[:,2] = class_acc[:,0]/ class_acc[:,1]
class_acc = np.mean(class_acc[:,2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
def fgsm_attack(image, epsilon, data_grad):
# Collect the element-wise sign of the data gradient
sign_data_grad = data_grad.sign()
# Create the perturbed image by adjusting each pixel of the input image
perturbed_image = image + epsilon*sign_data_grad
# Adding clipping to maintain [0,1] range
# perturbed_image = torch.clamp(perturbed_image, 0, 1)
# Return the perturbed image
return perturbed_image
def FGSM(classifier, criterion, points, targets, args):
points = torch.tensor(points).transpose(2,1).cuda()
targets = torch.LongTensor(targets).cuda()
points.requires_grad = True
st = datetime.datetime.now().timestamp()
pred, _ = classifier(points)
loss = criterion(pred, targets)
loss.backward()
data_grad = points.grad.data
# Call FGSM Attack
perturbed_data = fgsm_attack(points, args.learning_rate, data_grad)
st = datetime.datetime.now().timestamp() - st
return perturbed_data.transpose(2, 1)[0].cpu().data.numpy(), st
nbrs = NearestNeighbors(n_neighbors=TOP_K+1, algorithm='auto', metric='euclidean', n_jobs=-1)
def remove_outliers_defense(x, top_k=10, num_std=1.0):
top_k = int(top_k)
num_std = float(num_std)
if len(x.shape) == 3:
x = x[0]
nbrs.fit(x)
dists = nbrs.kneighbors(x, n_neighbors=top_k + 1)[0][:, 1:]
dists = np.mean(dists, axis=1)
avg = np.mean(dists)
std = num_std * np.std(dists)
remove_indices = np.where(dists > (avg + std))[0]
save_indices = np.where(dists <= (avg + std))[0]
x_remove = np.delete(np.copy(x), remove_indices, axis=0)
return save_indices, x_remove
def JGBA(classifier, criterion, points, targets, args):
eps = args.eps
eps_iter = args.eps_iter
n = args.n
NUM_POINT = args.num_point
assert points.shape[0] == 1, 'Batch size must be one'
points = points[0]
x_adv = np.copy(points)
yvar = torch.LongTensor(targets).cuda()
st = datetime.datetime.now().timestamp()
for i in range(n):
indices_saved, x_sor = remove_outliers_defense(x_adv, top_k=TOP_K, num_std=NUM_STD)
xvar = torch.tensor(x_sor[None,:,:]).cuda()
xvar.requires_grad = True
# xvar = pytorch_utils.to_var(torch.from_numpy(x_sor[None,:,:]), cuda=True, requires_grad=True)
# outputs = model_0(xvar)
# outputs = outputs[:, :NUM_POINT]
outputs, _ = classifier(xvar.transpose(2, 1))
loss = criterion(outputs, yvar)
loss.backward()
grad_np = xvar.grad.detach().cpu().numpy()[0]
xvar_should = torch.tensor(x_adv[None,:,:]).cuda()
xvar_should.requires_grad = True
# xvar_should = pytorch_utils.to_var(torch.from_numpy(x_adv[None,:,:]), cuda=True, requires_grad=True)
# outputs_should = model_0(xvar_should)
# outputs_should = outputs_should[:, :NUM_POINT]
outputs_should, _ = classifier(xvar_should.transpose(2, 1))
loss_should = criterion(outputs_should, yvar)
loss_should.backward()
grad_1024 = xvar_should.grad.detach().cpu().numpy()[0]
grad_sor = np.zeros((1024, 3))
for idx, index_saved in enumerate(indices_saved):
grad_sor[index_saved,:] = grad_np[idx,:]
grad_1024 += grad_sor
grad_1024 = normalize(grad_1024, axis=1)
perturb = eps_iter * grad_1024
perturb = np.clip(x_adv + perturb, clip_min, clip_max) - x_adv
norm = np.linalg.norm(perturb, axis=1)
factor = np.minimum(eps / (norm + 1e-12), np.ones_like(norm))
factor = np.tile(factor, (3,1)).transpose()
perturb *= factor
x_adv += perturb
st = datetime.datetime.now().timestamp() - st
x_perturb = np.copy(x_adv)
return x_perturb, st
def main(args):
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
# log_dir = experiment_dir.joinpath('logs/')
# log_dir.mkdir(exist_ok=True)
atk_dir = experiment_dir.joinpath('attacked_%s%s/' % (args.attack, args.file_affix))
atk_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
log_string('PARAMETER ...')
log_string(args)
'''DATA LOADING'''
log_string('Load dataset ...')
# DATA_PATH = 'data/modelnet40_normal_resampled/'
if args.dataset == 'ModelNet40':
DATA_PATH = 'data/modelnet40_normal_resampled/'
TEST_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='test',
normal_channel=args.normal)
elif args.dataset == 'ScanNetCls':
# TEST_PATH = 'dump/scannet_test_data8316.npz'
TEST_PATH = 'data/scannet/test_files.txt'
TEST_DATASET = ScanNetDataLoader(TEST_PATH, npoint=args.num_point, split='test',
normal_channel=args.normal)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=1, shuffle=False, num_workers=4)
'''MODEL LOADING'''
num_class = args.num_cls
# num_class = 100
MODEL = importlib.import_module(args.model)
shutil.copy('./models/%s.py' % args.model, str(experiment_dir))
shutil.copy('./models/pointnet_util.py', str(experiment_dir))
if args.model == 'lattice_cls':
classifier = MODEL.get_model(num_class,
normal_channel=args.normal,
backbone=get_backbone(args.backbone, num_class, 1), s=args.dim*3).cuda()
elif args.model == 'pointnet_ddn':
print('using ddn')
dnn_conf = {
'input_transform': False,
'feature_transform': False,
'robust_type': 'W',
'alpha': 1.0
}
classifier = MODEL.get_model(
num_class, dnn_conf['input_transform'],
dnn_conf['feature_transform'],
dnn_conf['robust_type'],
dnn_conf['alpha']
).cuda()
elif args.model == 'project_cls':
classifier = MODEL.get_model(num_class,
normal_channel=args.normal,
backbone=get_backbone(args.backbone, num_class, 1), s=args.dim).cuda()
elif args.model == 'graph_cls':
classifier = MODEL.get_model(num_class,
normal_channel=False,
backbone=get_backbone(args.backbone, num_class, 3)
).cuda()
else:
classifier = MODEL.get_model(num_class,normal_channel=args.normal).cuda()
criterion = torch.nn.CrossEntropyLoss()
# criterion = MODEL.get_adv_loss(num_class).cuda()
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
if args.model == 'graph_cls':
classifier.network_2d.load_state_dict(checkpoint['model_state_dict'])
else:
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrain model')
except:
log_string('No existing model, starting training from scratch...')
start_epoch = 0
classifier = classifier.eval()
attack_timer = []
pert_list = []
cloud_list = []
lbl_list = []
pred_list = []
visit = 0
correct_ori = 0
correct = 0
for batch_id, data in enumerate(testDataLoader, 0):
if args.num_attack > 0 and args.num_attack <= batch_id:
break
images, targets = data
targets = targets[:, 0]
images = images.transpose(2, 1)
images, targets = images.cuda(), targets.cuda()
visit += 1
with torch.no_grad():
pred, _ = classifier(images)
pred = pred.data.max(1)[1]
if not pred.eq(targets.long().data):
continue
correct_ori += 1
# import pdb; pdb.set_trace()
if args.attack == 'JGBA':
pert_img, tm = JGBA(classifier, criterion,
images.transpose(2, 1).cpu().data.numpy(),
targets.cpu().data.numpy(), args)
elif args.attack == 'FGSM':
pert_img, tm = FGSM(classifier, criterion,
images.transpose(2, 1).cpu().data.numpy(),
targets.cpu().data.numpy(), args)
with torch.no_grad():
# import pdb; pdb.set_trace()
pred_adv, _ = classifier(torch.tensor(pert_img[None, :]).transpose(2, 1).cuda())
pred_adv = pred_adv.data.max(1)[1]
if pred_adv.eq(targets.long().data): # untargeted attack success.
correct += 1
attack_timer.append(tm)
# mean_correct.append(correct/args.batch_size)
cloud_list.append(images.transpose(2, 1).cpu().data.numpy())
lbl_list.append(targets.cpu().data.numpy())
pert_list.append(pert_img[None])
pred_list.append(pred_adv.cpu().data.numpy())
# dist, img = attack_one_batch(classifier, criterion, images, targets, args, optimizer)
# dist_list.append(dist)
if batch_id % 10 == 0:
log_string('%d done, success rate: %f, test accu.: %f' % (visit, (correct_ori-correct)/correct_ori, correct/visit))
log_string('success rate: %f, test accu.: %f' % ((correct_ori-correct)/correct_ori, correct/visit))
log_string('Attack Mean Time: %fs on %d point clouds, %d orig correct, %d successfully attacked'% (sum(attack_timer)/len(attack_timer), visit, correct_ori, (correct_ori-correct)))
# import pdb; pdb.set_trace()
cloud_list = np.concatenate(cloud_list, axis=0)
pert_list = np.concatenate(pert_list, axis=0)
lbl_list = np.concatenate(lbl_list, axis=0)
pred_list = np.concatenate(pred_list, axis=0)
np.save(os.path.join(atk_dir, 'orig.npy'), cloud_list)
np.save(os.path.join(atk_dir, 'fgsm_pert.npy'), pert_list)
np.save(os.path.join(atk_dir, 'lable.npy'), lbl_list)
np.save(os.path.join(atk_dir, 'pred.npy'), pred_list)
if __name__ == '__main__':
args = parse_args()
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('perturbation')
experiment_dir.mkdir(exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s_pert_%s%s.txt' % (log_dir, args.model, args.attack, args.file_affix))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
main(args)