-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
48 lines (36 loc) · 1.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from option.options import Options
from preset import modify_options
from dataset import *
from run import find_run_using_name
def iter_to_epoch(cur_iter, batch_size, num_data):
print(cur_iter, batch_size, num_data)
return float(cur_iter * batch_size) / num_data
def epoch_to_iter(epoch, total_epoch, total_iter):
return (epoch / total_epoch) * total_iter
def main():
options = Options()
options.initialize()
modify_options(options)
options.parse()
print(options.pretty_str())
run_cls = find_run_using_name(options.general.run)
run = run_cls(options)
train_loader = run.get_train_loader()
num_iter = len(train_loader)
general_opt = options.general
cur_iter = 0
run.setup()
for epoch in range(1, general_opt.epoch+1):
for i, data in enumerate(train_loader):
cur_iter += 1
run.iterate(data)
if cur_iter % general_opt.print_iter == 0:
float_epoch = cur_iter / num_iter
run.log_and_visualize_iteration(epoch, cur_iter)
print("training progress: {}/{}".format(float_epoch, general_opt.epoch))
if epoch % general_opt.save_epoch == 0:
run.save_checkpoint(epoch)
print("checkpoint saved at {}th epoch".format(epoch))
run.end_epoch()
if __name__ == '__main__':
main()