-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathRetSegReg.py
472 lines (402 loc) · 20.9 KB
/
RetSegReg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import torch
import torch.nn as nn
import numpy as np
import cv2
import os, time, psutil, shutil
from utils import *
from utils_image import *
from utils_pytorch import *
import Network, UNet
import loss
import pytorch_ssim
from globalsetting import globalsetting
class options():
def __init__(self):
gs = globalsetting()
self.cuda_id = [0,0]
self.save_route = os.path.join(gs.ckpt_path, 'temp')
self.flow_feat_scales = 5 # total scales of features
self.flow_scale_times = 2 # output scale for flow map, 0 for non-scale, [0, flow_feat_scales-1]
self.flow_base_filters = 128
self.flow_max_filters = 128
self.flow_downsample = 'pool'
self.learing_rate = 1e-3
self.rand_offset = 5
self.totalvar = 2e-5 # 2e-3 for L2sq
self.ssim = 1e-5
self.photometric = 1e-3
self.smoothness_type = 'L1' # 'L2sq'
self.rot_inv_type = 'rot' # 'rot': rotation of 180 degree / 'neg': negative image
self.debug = False # if True, save training results every epoch
self.interval_test = 100
self.interval_save_ckpt = 100
self.total_epoch = int(5e4)
self.checkpoint_recovery = None
self.grid_size = 40 # int(np.ceil(768./5))
self.style_target = os.path.join(gs.data_path, 'HRF/manual1/12_h.tif')
self.dataset_path = os.path.join(gs.data_path, 'Fundus Fluorescein Angiogram Photographs & Colour Fundus Images of Diabetic Patients')
self.csv_path = os.path.join(gs.proj_path, 'FFAPCFIDP_affine.csv')
self.save_codes = ''
self.rand_offset_folder = None # not for training
self.mode = 'train' # 'eval' on specified data / 'test' on outside data
self.save_im = False # save image during 'train' or 'eval'
class RetSegReg():
def __init__(self, opt=options()):
self.opt = opt
if type(opt.cuda_id) is not list:
opt.cuda_id = [opt.cuda_id, opt.cuda_id]
self.cuda_id = opt.cuda_id
self.cuda_device = [torch.device('cuda:%d'%id) for id in opt.cuda_id]
self.process = psutil.Process(os.getpid())
if opt.save_route is not None and len(opt.save_route) > 0:
self.save_route = opt.save_route
os.makedirs(self.save_route, exist_ok=True)
if opt.mode.lower()[:2] in ['tr', 'ev']:
self.LoadData()
else:
self.SIZE = None
self.InitializeNetwork()
if opt.mode.lower()[:2] in ['tr']:
if self.opt.save_codes is not None and len(self.opt.save_codes) > 0:
self.save_codes()
self.InitializeTraining()
self.GetStyleReference()
self.loss_all_dict = {'train_ax': [], 'test_ax': []}
self.epoch_st = 0
self.epoch = -1
if opt.checkpoint_recovery is not None:
self.LoadCheckpoint(opt.checkpoint_recovery)
def save_codes(self):
code_dir = os.path.join(self.save_route, 'code')
os.makedirs(code_dir, exist_ok=True)
sp = [x.strip() for x in self.opt.save_codes.split(',')]
for name in sp:
if name.endswith('/'):
self.save_files(name, os.path.join(code_dir, name))
else:
shutil.copyfile(name, os.path.join(code_dir, name))
def save_files(self, src, dst):
os.makedirs(dst, exist_ok=True)
files = os.listdir(src)
for f in files:
if os.path.isdir(f):
self.save_files(os.path.join(src,f), os.path.join(dst,f))
else:
shutil.copyfile(os.path.join(src,f), os.path.join(dst,f))
def LoadData(self):
self.ds = FFAPCFIDP_icip(dataset_path=self.opt.dataset_path, csv_path=self.opt.csv_path)
self.SIZE = (self.ds.src_train.shape[1], self.ds.src_train.shape[2])
def InitializeNetwork(self):
self.vgg = Network.vgg16_features(cuda_id=self.cuda_id[0])
self.stn = Network.STN_Flow_relative(size=self.SIZE, cuda_id=self.cuda_id[0])
self.stn_destroy = Network.STN_Flow_relative(size=self.SIZE, cuda_id=self.cuda_id[0])
self.models = {}
self.models['seg_feat_src'] = Network.DRIU_novgg_siamese_feat(with_relu=False, cuda_id=self.cuda_id[0])
self.models['seg_feat_tgt'] = Network.DRIU_novgg_siamese_feat(with_relu=False, cuda_id=self.cuda_id[0])
self.models['seg_pred'] = Network.DRIU_novgg_siamese_seg(with_relu=True, with_sigmoid=True, cuda_id=self.cuda_id[0])
self.models['flow'] = UNet.UNetFlow(down_scales=self.opt.flow_feat_scales, output_scale=self.opt.flow_scale_times,
num_filters_base=self.opt.flow_base_filters, max_filters=self.opt.flow_max_filters,
input_channels=128, output_channels=2,
downsampling=self.opt.flow_downsample, cuda_id=self.cuda_id[1])
for k in self.models.keys():
print(self.models[k])
for k in self.models.keys():
num_params = 0
for param in self.models[k].parameters():
num_params += param.numel()
print('[Network %s] Total number of parameters : %.3f M' % (k, num_params / 1e6))
def InitializeTraining(self):
self.loss_funcs = {}
self.loss_funcs['style_gram'] = loss.StyleLoss()
self.loss_funcs['cmp_src_tgt'] = loss.MSELossMask()
if self.opt.smoothness_type.lower() == 'l1':
self.loss_funcs['flow_smooth'] = loss.TVLoss_L1()
else:
self.loss_funcs['flow_smooth'] = loss.TVLoss_sq()
self.loss_funcs['cmp_self'] = loss.MSELossMask()
self.loss_funcs['ssim'] = pytorch_ssim.SSIM()
model_params = []
for k in self.models.keys():
model_params += self.models[k].parameters()
self.optimizer = torch.optim.Adam(model_params, lr=self.opt.learing_rate)
def GetStyleReference(self):
ref_im = np.float32(cv2.imread(self.opt.style_target, cv2.IMREAD_GRAYSCALE))/255.
ref_im = cv2.resize(ref_im, dsize=(0,0), fx=576./ref_im.shape[0], fy=576./ref_im.shape[0])
ref_im = ref_im[:, (ref_im.shape[1]-768)//2:(ref_im.shape[1]-768)//2+768]
cv2.imwrite(os.path.join(self.save_route, 'style_reference.png'), np.uint8(ref_im * 255))
ref_batch = torch.cuda.FloatTensor(ndarray2tensor(ref_im), device=self.cuda_device[0]).repeat((1, 3, 1, 1))
features_ref = self.vgg(normalize_batch(ref_batch))
self.g_ref = [gram_matrix(feat) for feat in features_ref]
def LoadCheckpoint(self, checkpoint_recovery):
if checkpoint_recovery is not None:
print('checkpoint:', checkpoint_recovery)
checkpoint = torch.load(checkpoint_recovery, map_location='cuda:%d' % self.cuda_id[0])
for k in self.models.keys():
self.models[k].load_state_dict(checkpoint['model_' + k])
print('network parameters loaded ')
self.epoch_st = checkpoint['epoch']
if self.opt.mode.lower().startswith('tr'):
self.optimizer.load_state_dict(checkpoint['optimizer'])
for k in checkpoint.keys():
if k.startswith('train') or k.startswith('test'):
self.loss_all_dict[k] = np.array(checkpoint[k]).tolist()
np.random.set_state(checkpoint['np_state'])
print('training state loaded ')
def Save(self, phase=None):
self.GetResults()
self.SaveResults(phase=phase)
def GetResults(self, additional_keys=None):
self.save_dict = {}
save_keys = ['src_seg', 'tgt_seg', 'src_seg_t', 'src_t', 'src', 'tgt']
if additional_keys is not None:
save_keys += additional_keys
for k in save_keys:
tensor_np = get(self.tensors[k])
tensor_np = np.squeeze(np.transpose(tensor_np, axes=(0, 2, 3, 1)))
tensor_np[tensor_np > 1] = 1
tensor_np[tensor_np < 0] = 0
self.save_dict[k] = tensor_np
self.save_dict['comb'] = Combine2Channels(self.save_dict['src_seg'], self.save_dict['tgt_seg'])
self.save_dict['comb_t'] = Combine2Channels(self.save_dict['src_seg_t'], self.save_dict['tgt_seg'])
self.save_dict['grid'] = DualIm2Grid(self.save_dict['src'], self.save_dict['tgt'], (self.opt.grid_size,self.opt.grid_size))
self.save_dict['grid_t'] = DualIm2Grid(self.save_dict['src_t'], self.save_dict['tgt'], (self.opt.grid_size,self.opt.grid_size))
self.save_flows = {}
for k in ['flow', 'flow_r']:
self.save_flows[k] = {}
flow_np = get(self.tensors[k])
self.save_flows[k]['u'] = flow_np[0, 0, :, :]
self.save_flows[k]['v'] = flow_np[0, 1, :, :]
max_flow = np.ceil(np.max( (self.save_flows[k]['u']**2 + self.save_flows[k]['v']**2)**0.5 ))
flow_vis = Flow2Image(self.save_flows[k]['u'], self.save_flows[k]['v'], max_dis=max_flow)
if k.endswith('_r'):
cv2.putText(flow_vis, str(int(max_flow)), (10, flow_vis.shape[0]-10), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=2, color=(0, 0, 0), thickness=2)
self.save_dict[k] = flow_vis
def SaveResults(self, phase=None):
if phase is None:
phase = self.phase
save_ckpt_res = self.opt.mode.lower().startswith('tr') and (self.epoch + 1) % self.opt.interval_save_ckpt == 0
if save_ckpt_res==True:
im_dir = os.path.join(self.save_route, '%08d' % (self.epoch + 1))
os.makedirs(im_dir, exist_ok=True)
for k in self.save_dict.keys():
fname = phase[:2]+'_%02d_' % (self.it) + k + '.png'
cv2.imwrite(os.path.join(self.save_route, fname), np.uint8(self.save_dict[k] * 255))
if save_ckpt_res==True:
shutil.copyfile(os.path.join(self.save_route, fname), os.path.join(im_dir, fname))
# for k in self.save_flows.keys():
# fname = phase[:2] + '_%02d_'% (self.it) + k+'.mat'
# sio.savemat(os.path.join(self.save_route, fname), self.save_flows[k])
# if save_ckpt_res==True:
# shutil.copyfile(os.path.join(self.save_route, fname), os.path.join(im_dir, fname))
def _Segment(self, modal='src'):
features_1 = self.vgg(normalize_batch(self.tensors[modal]))
feat_f_1 = self.models['seg_feat_'+modal](features_1)
seg_1 = self.models['seg_pred'](feat_f_1)
if self.opt.rot_inv_type.startswith('rot'):
im_inv = torch.flip(self.tensors[modal], dims=[2,3])
else:
im_inv = 1 - self.tensors[modal]
features_2 = self.vgg(normalize_batch( im_inv ))
feat_f_2 = self.models['seg_feat_'+modal](features_2)
seg_2 = self.models['seg_pred'](feat_f_2)
if self.opt.rot_inv_type.startswith('rot'):
seg_2 = torch.flip(seg_2, dims=[2,3])
feat_f_2 = torch.flip(feat_f_2, dims=[2,3])
im_seg = ( seg_1 + seg_2 ) / 2 * self.tensors[modal+'_msk']
feat_f_c = (feat_f_1+feat_f_2) / 2
return im_seg, feat_f_c, seg_1, seg_2
def Forward(self):
''' '''
''' random flow for src and tgt '''
if self.phase.lower().startswith('tr'):
SIZE = self.SIZE
randscale = self.opt.rand_offset
flow_r_src = np.array([cv2.resize(np.random.normal(scale=randscale, size=(3,4)), dsize=(SIZE[1],SIZE[0])),
cv2.resize(np.random.normal(scale=randscale, size=(3,4)), dsize=(SIZE[1],SIZE[0]))])
flow_r_src = torch.cuda.FloatTensor(flow_r_src[np.newaxis], device=self.cuda_device[0])
self.tensors['src'] = self.stn_destroy(flow_r_src, self.tensors['src'])
self.tensors['src_msk'] = self.stn_destroy(flow_r_src, self.tensors['src_msk'])
flow_r_tgt = np.array([cv2.resize(np.random.normal(scale=randscale, size=(3,4)), dsize=(SIZE[1],SIZE[0])),
cv2.resize(np.random.normal(scale=randscale, size=(3,4)), dsize=(SIZE[1],SIZE[0]))])
flow_r_tgt = torch.cuda.FloatTensor(flow_r_tgt[np.newaxis], device=self.cuda_device[0])
self.tensors['tgt'] = self.stn_destroy(flow_r_tgt, self.tensors['tgt'])
self.tensors['tgt_msk'] = self.stn_destroy(flow_r_tgt, self.tensors['tgt_msk'])
''' seg '''
self.tensors['src_seg'], feat_f_src_c, self.interm['seg_src_1'], self.interm['seg_src_2'] = self._Segment(modal='src')
self.tensors['tgt_seg'], feat_f_tgt_c, self.interm['seg_tgt_1'], self.interm['seg_tgt_2'] = self._Segment(modal='tgt')
''' flow '''
feat_f = torch.cat(( feat_f_src_c, feat_f_tgt_c ), dim=1)
self.tensors['flow'] = self.models['flow'](feat_f.to(self.cuda_device[1])).to(self.cuda_device[0])
if self.opt.flow_scale_times>0:
self.tensors['flow_r'] = nn.functional.interpolate(self.tensors['flow'], scale_factor=2**self.opt.flow_scale_times, mode='bilinear')
else:
self.tensors['flow_r'] = self.tensors['flow']
''' transformation '''
self.tensors['src_seg_t'] = self.stn(self.tensors['flow_r'], self.tensors['src_seg'])
self.tensors['src_msk_t'] = self.stn(self.tensors['flow_r'], self.tensors['src_msk'])
self.tensors['src_t'] = self.stn(self.tensors['flow_r'], self.tensors['src'])
def ComputeLoss(self):
''' losses '''
''' self compare '''
self.losses['cmp_self_src'] = self.loss_funcs['cmp_self'](self.interm['seg_src_1'], self.interm['seg_src_2'])
self.losses['cmp_self_tgt'] = self.loss_funcs['cmp_self'](self.interm['seg_tgt_1'], self.interm['seg_tgt_2'])
''' style loss '''
features_seg_src = self.vgg(normalize_batch(self.tensors['src_seg'].repeat(1, 3, 1, 1)))
features_seg_tgt = self.vgg(normalize_batch(self.tensors['tgt_seg'].repeat(1, 3, 1, 1)))
self.losses['style_gram_src'] = self.loss_funcs['style_gram'](features_seg_src, self.g_ref)
self.losses['style_gram_tgt'] = self.loss_funcs['style_gram'](features_seg_tgt, self.g_ref)
''' flow '''
self.losses['cmp_src_tgt'] = self.loss_funcs['cmp_src_tgt'](self.tensors['src_seg_t'], self.tensors['tgt_seg'],
[self.tensors['src_msk_t'], self.tensors['tgt_msk']])
self.losses['flow_smooth'] = self.loss_funcs['flow_smooth'](self.tensors['flow'])
self.losses['total'] = (self.losses['style_gram_src'] + self.losses['style_gram_tgt']) * 1 + \
self.losses['cmp_src_tgt'] * self.opt.photometric + \
(self.losses['cmp_self_src'] + self.losses['cmp_self_tgt']) * 1e-3 + \
self.losses['flow_smooth'] * self.opt.totalvar # losses['feat_norm'] * 1e-4
if self.opt.ssim > 0:
self.losses['ssim'] = 1 - self.loss_funcs['ssim'](self.tensors['src_t'] * self.tensors['src_msk_t'] * self.tensors['tgt_msk'],
self.tensors['tgt'] * self.tensors['src_msk_t'] * self.tensors['tgt_msk'])
self.losses['total'] += self.losses['ssim']*self.opt.ssim
def SetStatus(self, status='train'):
self.phase = status
for k in self.models.keys():
if status.startswith('tr'):
self.models[k].train()
else:
self.models[k].eval()
def Train(self):
t0 = time.time()
for self.epoch in range(self.epoch_st, self.opt.total_epoch):
train_loss_dict = {}
self.SetStatus('train')
for self.it in range(len(self.ds.src_train)):
self.tensors, self.interm, self.losses = {}, {}, {}
self.optimizer.zero_grad()
im_train_list = PatchRandMirror([np.copy(self.ds.src_train[self.it]), np.copy(self.ds.tgt_train[self.it]),
np.copy(self.ds.src_train_msk[self.it]), np.copy(self.ds.tgt_train_msk[self.it])])
self.tensors['src'] = torch.cuda.FloatTensor( ndarray2tensor(im_train_list[0].copy()), device=self.cuda_device[0] )
self.tensors['tgt'] = torch.cuda.FloatTensor( ndarray2tensor(im_train_list[1].copy()), device=self.cuda_device[0] )
self.tensors['src_msk'] = torch.cuda.FloatTensor( ndarray2tensor(im_train_list[2].copy()), device=self.cuda_device[0] )
self.tensors['tgt_msk'] = torch.cuda.FloatTensor( ndarray2tensor(im_train_list[3].copy()), device=self.cuda_device[0] )
self.Forward()
self.ComputeLoss()
self.losses['total'].backward()
self.optimizer.step()
if (self.opt.save_im and (self.epoch+1)%self.opt.interval_test==0) or self.opt.debug:
self.Save()
for k, v in self.losses.items():
if k not in train_loss_dict:
train_loss_dict[k] = []
train_loss_dict[k].append(get(v))
self.loss_all_dict[self.phase+'_ax'].append(self.epoch+1)
for k, v in train_loss_dict.items():
if self.phase+'loss_'+k not in self.loss_all_dict:
self.loss_all_dict[self.phase+'loss_'+k] = []
self.loss_all_dict[self.phase + 'loss_' + k].append(v)
print(self.epoch, '%.02f'%(time.time()-t0), ' sec', end=' -- ram ')
resident_size = self.process.memory_info().rss
rss_g = resident_size //(1024**3)
rss_m = (resident_size % (1024**3)) //(1024**2)
rss_k = (resident_size % (1024**2)) //(1024**1)
rss_b = resident_size % 1024
print(rss_g, 'G', rss_m, 'M', rss_k, 'K', rss_b)
self.test_loss_dict = {}
if (self.epoch+1)%self.opt.interval_test == 0:
self.TestFlow(phase='test')
self.loss_all_dict[self.phase+'_ax'].append(self.epoch + 1)
for k, v in self.test_loss_dict.items():
if self.phase + 'loss_' + k not in self.loss_all_dict:
self.loss_all_dict[self.phase + 'loss_' + k] = []
self.loss_all_dict[self.phase + 'loss_' + k].append(v)
sio.savemat(os.path.join(self.save_route, 'stat.mat'), mdict=self.loss_all_dict)
shutil.copyfile(os.path.join(self.save_route, 'stat.mat'), os.path.join(self.save_route, 'stat_bk.mat'))
if (self.epoch+1)%self.opt.interval_test == 0 or self.opt.debug:
print('epoch %d' % (self.epoch + 1))
for loss_dict, phase_l in zip([train_loss_dict, self.test_loss_dict], ['train loss', 'test loss']):
for k, v in loss_dict.items():
print(phase_l, k, np.mean(v))
print('----------')
print('%.02f'%(time.time()-t0), ' sec')
print('\n')
if (self.epoch+1)%self.opt.interval_save_ckpt == 0:
checkpoint_name = os.path.join(self.save_route, 'ckpt_%d.pth.tar'%(self.epoch+1))
checkpoint_dict = {}
for k, v in self.loss_all_dict.items():
checkpoint_dict[k] = v
checkpoint_dict['epoch'] = self.epoch + 1
checkpoint_dict['optimizer'] = self.optimizer.state_dict()
for k, v in self.models.items():
checkpoint_dict['model_'+k] = v.state_dict()
checkpoint_dict['np_state'] = np.random.get_state()
save_checkpoint(checkpoint_dict, checkpoint_name)
def TestFlow(self, phase='test', rand_offset_folder=None):
if rand_offset_folder is None:
rand_offset_folder = self.opt.rand_offset_folder
if phase.startswith('tr'):
src = self.ds.src_train
tgt = self.ds.tgt_train
src_msk = self.ds.src_train_msk
tgt_msk = self.ds.tgt_train_msk
else:
src = self.ds.src_test
tgt = self.ds.tgt_test
src_msk = self.ds.src_test_msk
tgt_msk = self.ds.tgt_test_msk
self.flows_test = []
self.SetStatus('test')
for self.it in range(len(src)):
self.tensors, self.interm, self.losses = {}, {}, {}
if self.opt.mode.lower().startswith('tr'):
self.optimizer.zero_grad()
if rand_offset_folder is not None:
src_u, src_v, tgt_u, tgt_v = \
[cv2.resize(sio.loadmat(os.path.join(rand_offset_folder, phase[:2]+'_rand_flow_%02d.mat'%(self.it)))[k].astype(np.float32),
dsize=(self.SIZE[1], self.SIZE[0]))
for k in ['src_u', 'src_v', 'tgt_u', 'tgt_v']]
src_, src_msk_ = RemapCPU([src[self.it].copy(), src_msk[self.it].copy()], {'u': src_u, 'v': src_v}, interpolation=cv2.INTER_CUBIC)
tgt_, tgt_msk_ = RemapCPU([tgt[self.it].copy(), tgt_msk[self.it].copy()], {'u': tgt_u, 'v': tgt_v}, interpolation=cv2.INTER_CUBIC)
else:
src_, src_msk_ = src[self.it].copy(), src_msk[self.it].copy()
tgt_, tgt_msk_ = tgt[self.it].copy(), tgt_msk[self.it].copy()
self.tensors['src'] = torch.cuda.FloatTensor(ndarray2tensor(src_), device=self.cuda_device[0])
self.tensors['tgt'] = torch.cuda.FloatTensor(ndarray2tensor(tgt_), device=self.cuda_device[0])
self.tensors['src_msk'] = torch.cuda.FloatTensor(ndarray2tensor(src_msk_), device=self.cuda_device[0])
self.tensors['tgt_msk'] = torch.cuda.FloatTensor(ndarray2tensor(tgt_msk_), device=self.cuda_device[0])
with torch.no_grad():
self.Forward()
if self.opt.save_im:
self.Save(phase=phase)
if self.opt.mode=='eval':
self.flows_test.append(np.squeeze(get(self.tensors['flow_r'])))
for k, v in self.losses.items():
if k not in self.test_loss_dict:
self.test_loss_dict[k] = []
self.test_loss_dict[k].append(get(v))
if self.opt.mode=='eval':
sio.savemat(os.path.join(self.save_route, phase[:2] + '_flows.mat'), {'flows': self.flows_test})
# if self.opt.mode.startswith('tr'):
# shutil.copyfile(os.path.join(self.save_route, phase[:2] + '_flows.mat'),
# os.path.join(self.save_route, '%08d'%(self.epoch+1), phase[:2]+'_flows_ep%d.mat'%(self.epoch+1)))
def Pred_Seg(self, im, msk, modal='src'):
self.SetStatus('test')
self.tensors = {}
self.tensors[modal] = torch.cuda.FloatTensor(ndarray2tensor(im), device=self.cuda_device[0])
self.tensors[modal+'_msk'] = torch.cuda.FloatTensor(ndarray2tensor(msk), device=self.cuda_device[0])
with torch.no_grad():
seg, _, _, _ = self._Segment(modal)
seg_np = np.squeeze(get(seg))
return seg_np
def Pred_Flow(self, src, src_msk, tgt, tgt_msk):
self.SetStatus('test')
self.tensors = {}
self.tensors['src'] = torch.cuda.FloatTensor(ndarray2tensor(src), device=self.cuda_device[0])
self.tensors['tgt'] = torch.cuda.FloatTensor(ndarray2tensor(tgt), device=self.cuda_device[0])
self.tensors['src_msk'] = torch.cuda.FloatTensor(ndarray2tensor(src_msk), device=self.cuda_device[0])
self.tensors['tgt_msk'] = torch.cuda.FloatTensor(ndarray2tensor(tgt_msk), device=self.cuda_device[0])
with torch.no_grad():
self.Forward()
src_seg = np.squeeze(get(self.tensors['src_seg']))
tgt_seg = np.squeeze(get(self.tensors['tgt_seg']))
flow_r = np.squeeze(get(self.tensors['flow_r']))
return src_seg, tgt_seg, flow_r