-
Notifications
You must be signed in to change notification settings - Fork 423
/
Copy pathlkjcholesky.jl
227 lines (201 loc) · 7.85 KB
/
lkjcholesky.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
using Distributions
using Random
using LinearAlgebra
using Test
using FiniteDifferences
@testset "LKJCholesky" begin
function test_draw(d::LKJCholesky, x; check_uplo=true)
@test insupport(d, x)
check_uplo && @test x.uplo == d.uplo
end
function test_draws(d::LKJCholesky, xs; check_uplo=true, nkstests=1)
@test all(x -> insupport(d, x), xs)
check_uplo && @test all(x -> x.uplo == d.uplo, xs)
p = d.d
dmat = LKJ(p, d.η)
marginal = Distributions._marginal(dmat)
ndraws = length(xs)
zs = Array{eltype(d)}(undef, p, p, ndraws)
for k in 1:ndraws
zs[:, :, k] = Matrix(xs[k])
end
@testset "LKJCholesky marginal moments" begin
@test mean(zs; dims=3)[:, :, 1] ≈ I atol=0.1
@test var(zs; dims=3)[:, :, 1] ≈ var(marginal) * (ones(p, p) - I) atol=0.1
@testset for n in 2:5
for i in 1:p, j in 1:(i-1)
@test moment(zs[i, j, :], n) ≈ moment(rand(marginal, ndraws), n) atol=0.1
end
end
end
@testset "LKJCholesky marginal KS test" begin
α = 0.01
L = sum(1:(p - 1))
for i in 1:p, j in 1:(i-1)
@test pvalue_kolmogorovsmirnoff(zs[i, j, :], marginal) >= α / L / nkstests
end
end
end
# Compute logdetjac of ϕ: L → L L' where only strict lower triangle of L and L L' are unique
function cholesky_inverse_logdetjac(L)
size(L, 1) == 1 && return 0.0
J = jacobian(central_fdm(5, 1), cholesky_vec_to_corr_vec, stricttril_to_vec(L))[1]
return logabsdet(J)[1]
end
stricttril_to_vec(L) = [L[i, j] for i in axes(L, 1) for j in 1:(i - 1)]
function vec_to_stricttril(l)
n = length(l)
p = Int((1 + sqrt(8n + 1)) / 2)
L = similar(l, p, p)
fill!(L, 0)
k = 1
for i in 1:p, j in 1:(i - 1)
L[i, j] = l[k]
k += 1
end
return L
end
function cholesky_vec_to_corr_vec(l)
L = vec_to_stricttril(l)
for i in axes(L, 1)
w = view(L, i, 1:(i-1))
wnorm = norm(w)
if wnorm > 1
w ./= wnorm
wnorm = 1
end
L[i, i] = sqrt(1 - wnorm^2)
end
return stricttril_to_vec(L * L')
end
@testset "Constructors" begin
@testset for p in (4, 5), η in (2, 3.5)
d = LKJCholesky(p, η)
@test d.d == p
@test d.η == η
@test d.uplo == 'L'
@test d.logc0 == LKJ(p, η).logc0
end
@test_throws DomainError LKJCholesky(0, 2)
@test_throws DomainError LKJCholesky(4, 0.0)
@test_throws DomainError LKJCholesky(4, -1)
for uplo in (:U, 'U')
d = LKJCholesky(4, 2, uplo)
@test d.uplo === 'U'
end
for uplo in (:L, 'L')
d = LKJCholesky(4, 2, uplo)
@test d.uplo === 'L'
end
@test_throws ArgumentError LKJCholesky(4, 2, :F)
@test_throws ArgumentError LKJCholesky(4, 2, 'F')
end
@testset "REPL display" begin
d = LKJCholesky(5, 1)
@test sprint(show, d) == "$(typeof(d))(\nd: 5\nη: 1.0\nuplo: L\n)\n"
end
@testset "Conversion" begin
d = LKJCholesky(5, 3.5)
@test convert(LKJCholesky{Float64}, d) === d
df0_1 = convert(LKJCholesky{Float32}, d)
@test df0_1 isa LKJCholesky{Float32}
@test df0_1.d == d.d
@test df0_1.η ≈ d.η
@test df0_1.uplo == d.uplo
@test df0_1.logc0 ≈ d.logc0
df0_2 = convert(LKJCholesky{BigFloat}, d.d, d.η, d.uplo, d.logc0)
@test df0_2 isa LKJCholesky{BigFloat}
@test df0_2.d == d.d
@test df0_2.η ≈ d.η
@test df0_2.uplo == d.uplo
@test df0_2.logc0 ≈ d.logc0
end
@testset "properties" begin
@testset for p in (4, 5), η in (2, 3.5), uplo in ('L', 'U')
d = LKJCholesky(p, η, uplo)
@test d.d == p
@test size(d) == (p, p)
@test Distributions.params(d) == (d.d, d.η, d.uplo)
@test partype(d) <: Float64
m = mode(d)
@test m isa Cholesky{eltype(d)}
@test Matrix(m) ≈ I
end
for (d, η) in ((2, 4), (2, 1), (3, 1)), T in (Float32, Float64)
@test @inferred(partype(LKJCholesky(d, T(η)))) === T
end
@testset "insupport" begin
@test insupport(LKJCholesky(40, 2, 'U'), cholesky(rand(LKJ(40, 2))))
@test insupport(LKJCholesky(40, 2), cholesky(rand(LKJ(40, 2))))
@test !insupport(LKJCholesky(40, 2), cholesky(rand(LKJ(41, 2))))
for (d, η) in ((2, 4), (2, 1), (3, 1)), T in (Float32, Float64)
@test @inferred(logpdf(LKJCholesky(40, T(2)), cholesky(T.(rand(LKJ(41, 2)))))) === T(-Inf)
end
z = rand(LKJ(40, 1))
z .+= exp(Symmetric(randn(size(z)))) .* 1e-8
x = cholesky(z)
@test !insupport(LKJCholesky(4, 2), x)
end
end
@testset "Evaluation" begin
@testset for p in (1, 4, 10), η in (0.5, 1, 3)
d = LKJ(p, η)
dchol = LKJCholesky(p, η)
z = rand(d)
x = cholesky(z)
x_L = typeof(x)(Matrix(x.L), 'L', x.info)
logdetJ = sum(i -> (p - i) * log(x.UL[i, i]), 1:p)
logdetJ_approx = cholesky_inverse_logdetjac(x.L)
@test logdetJ ≈ logdetJ_approx
@test logpdf(dchol, x) ≈ logpdf(d, z) + logdetJ
@test logpdf(dchol, x_L) ≈ logpdf(dchol, x)
@test pdf(dchol, x) ≈ exp(logpdf(dchol, x))
@test pdf(dchol, x_L) ≈ pdf(dchol, x)
@test loglikelihood(dchol, x) ≈ logpdf(dchol, x)
xs = cholesky.(rand(d, 10))
@test loglikelihood(dchol, xs) ≈ sum(logpdf(dchol, x) for x in xs)
end
end
@testset "Sampling" begin
rng = MersenneTwister(66)
nkstests = 4 # use for appropriate Bonferroni correction for KS test
@testset "rand" begin
@test rand(LKJCholesky(1, 0.5)).factors == ones(1, 1)
@testset for p in (2, 4, 10), η in (0.5, 1, 3), uplo in ('L', 'U')
d = LKJCholesky(p, η, uplo)
test_draw(d, rand(rng, d))
test_draws(d, rand(rng, d, 10^4); nkstests=nkstests)
end
@test_broken rand(rng, LKJCholesky(5, Inf)) ≈ I
end
@testset "rand!" begin
@testset for p in (2, 4, 10), η in (0.5, 1, 3), uplo in ('L', 'U')
d = LKJCholesky(p, η, uplo)
x = Cholesky(Matrix{Float64}(undef, p, p), uplo, 0)
rand!(rng, d, x)
test_draw(d, x)
x = Cholesky(Matrix{Float64}(undef, p, p), uplo, 0)
rand!(d, x)
test_draw(d, x)
# test that uplo of Cholesky object is respected
x2 = Cholesky(Matrix{Float64}(undef, p, p), uplo == 'L' ? 'U' : 'L', 0)
rand!(rng, d, x2)
test_draw(d, x2; check_uplo = false)
# allocating
xs = Vector{typeof(x)}(undef, 10^4)
rand!(rng, d, xs)
test_draws(d, xs; nkstests=nkstests)
F2 = cholesky(exp(Symmetric(randn(rng, p, p))))
xs2 = [deepcopy(F2) for _ in 1:10^4]
xs2[1] = cholesky(exp(Symmetric(randn(rng, p + 1, p + 1))))
rand!(rng, d, xs2)
test_draws(d, xs2; nkstests=nkstests)
# non-allocating
F3 = cholesky(exp(Symmetric(randn(rng, p, p))))
xs3 = [deepcopy(F3) for _ in 1:10^4]
rand!(rng, d, xs3)
test_draws(d, xs3; check_uplo = uplo == 'U', nkstests=nkstests)
end
end
end
end