-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhs10.jl
211 lines (190 loc) · 4.33 KB
/
hs10.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
export HS10
"""
nlp = HS10()
## Problem 10 in the Hock-Schittkowski suite
```math
\\begin{aligned}
\\min \\quad & x_1 - x_2 \\\\
\\text{s. to} \\quad & -3x_1^2 + 2x_1 x_2 - x_2^2 + 1 \\geq 0
\\end{aligned}
```
Starting point: `[-10; 10]`.
"""
mutable struct HS10{T, S} <: AbstractNLPModel{T, S}
meta::NLPModelMeta{T, S}
counters::Counters
end
function HS10(::Type{S}) where {S}
T = eltype(S)
meta = NLPModelMeta{T, S}(
2,
ncon = 1,
x0 = S([-10; 10]),
lcon = fill!(S(undef, 1), 0),
ucon = fill!(S(undef, 1), T(Inf)),
name = "HS10_manual",
)
return HS10(meta, Counters())
end
HS10() = HS10(Float64)
HS10(::Type{T}) where {T <: Number} = HS10(Vector{T})
function NLPModels.obj(nlp::HS10, x::AbstractVector)
@lencheck 2 x
increment!(nlp, :neval_obj)
return x[1] - x[2]
end
function NLPModels.grad!(nlp::HS10, x::AbstractVector{T}, gx::AbstractVector{T}) where {T}
@lencheck 2 x gx
increment!(nlp, :neval_grad)
gx[1] = one(T)
gx[2] = -one(T)
return gx
end
function NLPModels.hess_structure!(nlp::HS10, rows::AbstractVector{Int}, cols::AbstractVector{Int})
@lencheck 3 rows cols
rows[1] = 1
rows[2] = 2
rows[3] = 2
cols[1] = 1
cols[2] = 1
cols[3] = 2
return rows, cols
end
function NLPModels.hess_coord!(
nlp::HS10,
x::AbstractVector{T},
vals::AbstractVector{T};
obj_weight = 1.0,
) where {T}
@lencheck 2 x
@lencheck 3 vals
increment!(nlp, :neval_hess)
vals .= zero(T)
return vals
end
function NLPModels.hprod!(
nlp::HS10,
x::AbstractVector{T},
v::AbstractVector,
Hv::AbstractVector;
obj_weight = 1.0,
) where {T}
@lencheck 2 x v Hv
increment!(nlp, :neval_hprod)
Hv .= zero(T)
return Hv
end
function NLPModels.hess_coord!(
nlp::HS10,
x::AbstractVector{T},
y::AbstractVector{T},
vals::AbstractVector{T};
obj_weight = 1.0,
) where {T}
@lencheck 2 x
@lencheck 1 y
@lencheck 3 vals
increment!(nlp, :neval_hess)
vals[1] = -6 * y[1]
vals[2] = 2 * y[1]
vals[3] = -2 * y[1]
return vals
end
function NLPModels.hprod!(
nlp::HS10,
x::AbstractVector,
y::AbstractVector,
v::AbstractVector,
Hv::AbstractVector;
obj_weight = 1.0,
)
@lencheck 2 x v Hv
@lencheck 1 y
increment!(nlp, :neval_hprod)
Hv[1] = y[1] * (-6 * v[1] + 2 * v[2])
Hv[2] = y[1] * (2 * v[1] - 2 * v[2])
return Hv
end
function NLPModels.cons_nln!(nlp::HS10, x::AbstractVector, cx::AbstractVector)
@lencheck 2 x
@lencheck 1 cx
increment!(nlp, :neval_cons_nln)
cx[1] = -3 * x[1]^2 + 2 * x[1] * x[2] - x[2]^2 + 1
return cx
end
function NLPModels.jac_nln_structure!(
nlp::HS10,
rows::AbstractVector{Int},
cols::AbstractVector{Int},
)
@lencheck 2 rows cols
rows[1] = 1
cols[1] = 1
rows[2] = 1
cols[2] = 2
return rows, cols
end
function NLPModels.jac_nln_coord!(nlp::HS10, x::AbstractVector, vals::AbstractVector)
@lencheck 2 x vals
increment!(nlp, :neval_jac_nln)
vals[1] = -6 * x[1] + 2 * x[2]
vals[2] = 2 * x[1] - 2 * x[2]
return vals
end
function NLPModels.jprod_nln!(nlp::HS10, x::AbstractVector, v::AbstractVector, Jv::AbstractVector)
@lencheck 2 x v
@lencheck 1 Jv
increment!(nlp, :neval_jprod_nln)
Jv[1] = (-6 * x[1] + 2 * x[2]) * v[1] + (2 * x[1] - 2 * x[2]) * v[2]
return Jv
end
function NLPModels.jtprod_nln!(nlp::HS10, x::AbstractVector, v::AbstractVector, Jtv::AbstractVector)
@lencheck 2 x Jtv
@lencheck 1 v
increment!(nlp, :neval_jtprod_nln)
Jtv[1] = (-6 * x[1] + 2 * x[2]) * v[1]
Jtv[2] = (2 * x[1] - 2 * x[2]) * v[1]
return Jtv
end
function NLPModels.jth_hprod!(
nlp::HS10,
x::AbstractVector{T},
v::AbstractVector{T},
j::Integer,
Hv::AbstractVector{T},
) where {T}
@lencheck 2 x v Hv
@rangecheck 1 1 j
NLPModels.increment!(nlp, :neval_jhprod)
Hv[1] = -6 * v[1] + 2 * v[2]
Hv[2] = 2 * v[1] - 2 * v[2]
return Hv
end
function NLPModels.jth_hess_coord!(
nlp::HS10,
x::AbstractVector{T},
j::Integer,
vals::AbstractVector{T},
) where {T}
@lencheck 3 vals
@lencheck 2 x
@rangecheck 1 1 j
NLPModels.increment!(nlp, :neval_jhess)
vals[1] = T(-6)
vals[2] = T(2)
vals[3] = T(-2)
return vals
end
function NLPModels.ghjvprod!(
nlp::HS10,
x::AbstractVector,
g::AbstractVector,
v::AbstractVector,
gHv::AbstractVector,
)
@lencheck nlp.meta.nvar x g v
@lencheck nlp.meta.ncon gHv
increment!(nlp, :neval_hprod)
gHv[1] = g[1] * (-6 * v[1] + 2 * v[2]) + g[2] * (2 * v[1] - 2 * v[2])
return gHv
end