diff --git a/stdlib/LinearAlgebra/src/LinearAlgebra.jl b/stdlib/LinearAlgebra/src/LinearAlgebra.jl index 27d4255fb656b..17216845b350c 100644 --- a/stdlib/LinearAlgebra/src/LinearAlgebra.jl +++ b/stdlib/LinearAlgebra/src/LinearAlgebra.jl @@ -673,7 +673,9 @@ matprod_dest(A::Diagonal, B::Diagonal, TS) = _matprod_dest_diag(B, TS) _matprod_dest_diag(A, TS) = similar(A, TS) function _matprod_dest_diag(A::SymTridiagonal, TS) n = size(A, 1) - Tridiagonal(similar(A, TS, n-1), similar(A, TS, n), similar(A, TS, n-1)) + ev = similar(A, TS, max(0, n-1)) + dv = similar(A, TS, n) + Tridiagonal(ev, dv, similar(ev)) end # Special handling for adj/trans vec diff --git a/stdlib/LinearAlgebra/src/bidiag.jl b/stdlib/LinearAlgebra/src/bidiag.jl index d86bad7e41435..12d638f52add6 100644 --- a/stdlib/LinearAlgebra/src/bidiag.jl +++ b/stdlib/LinearAlgebra/src/bidiag.jl @@ -557,7 +557,8 @@ end # function to get the internally stored vectors for Bidiagonal and [Sym]Tridiagonal # to avoid allocations in _mul! below (#24324, #24578) _diag(A::Tridiagonal, k) = k == -1 ? A.dl : k == 0 ? A.d : A.du -_diag(A::SymTridiagonal, k) = k == 0 ? A.dv : A.ev +_diag(A::SymTridiagonal{<:Number}, k) = k == 0 ? A.dv : A.ev +_diag(A::SymTridiagonal, k) = k == 0 ? view(A, diagind(A, IndexStyle(A))) : view(A, diagind(A, 1, IndexStyle(A))) function _diag(A::Bidiagonal, k) if k == 0 return A.dv @@ -577,12 +578,45 @@ function _bibimul!(C, A, B, _add) check_A_mul_B!_sizes(size(C), size(A), size(B)) n = size(A,1) iszero(n) && return C - n <= 3 && return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) # We use `_rmul_or_fill!` instead of `_modify!` here since using # `_modify!` in the following loop will not update the # off-diagonal elements for non-zero beta. _rmul_or_fill!(C, _add.beta) iszero(_add.alpha) && return C + if n <= 3 + # naive multiplication + for I in CartesianIndices(C) + C[I] += _add(sum(A[I[1], k] * B[k, I[2]] for k in axes(A,2))) + end + return C + end + @inbounds begin + # first column of C + C[1,1] += _add(A[1,1]*B[1,1] + A[1, 2]*B[2,1]) + C[2,1] += _add(A[2,1]*B[1,1] + A[2,2]*B[2,1]) + C[3,1] += _add(A[3,2]*B[2,1]) + # second column of C + C[1,2] += _add(A[1,1]*B[1,2] + A[1,2]*B[2,2]) + C[2,2] += _add(A[2,1]*B[1,2] + A[2,2]*B[2,2] + A[2,3]*B[3,2]) + C[3,2] += _add(A[3,2]*B[2,2] + A[3,3]*B[3,2]) + C[4,2] += _add(A[4,3]*B[3,2]) + end # inbounds + # middle columns + __bibimul!(C, A, B, _add) + @inbounds begin + C[n-3,n-1] += _add(A[n-3,n-2]*B[n-2,n-1]) + C[n-2,n-1] += _add(A[n-2,n-2]*B[n-2,n-1] + A[n-2,n-1]*B[n-1,n-1]) + C[n-1,n-1] += _add(A[n-1,n-2]*B[n-2,n-1] + A[n-1,n-1]*B[n-1,n-1] + A[n-1,n]*B[n,n-1]) + C[n, n-1] += _add(A[n,n-1]*B[n-1,n-1] + A[n,n]*B[n,n-1]) + # last column of C + C[n-2, n] += _add(A[n-2,n-1]*B[n-1,n]) + C[n-1, n] += _add(A[n-1,n-1]*B[n-1,n ] + A[n-1,n]*B[n,n ]) + C[n, n] += _add(A[n,n-1]*B[n-1,n ] + A[n,n]*B[n,n ]) + end # inbounds + C +end +function __bibimul!(C, A, B, _add) + n = size(A,1) Al = _diag(A, -1) Ad = _diag(A, 0) Au = _diag(A, 1) @@ -590,44 +624,198 @@ function _bibimul!(C, A, B, _add) Bd = _diag(B, 0) Bu = _diag(B, 1) @inbounds begin - # first row of C - C[1,1] += _add(A[1,1]*B[1,1] + A[1, 2]*B[2, 1]) - C[1,2] += _add(A[1,1]*B[1,2] + A[1,2]*B[2,2]) - C[1,3] += _add(A[1,2]*B[2,3]) - # second row of C - C[2,1] += _add(A[2,1]*B[1,1] + A[2,2]*B[2,1]) - C[2,2] += _add(A[2,1]*B[1,2] + A[2,2]*B[2,2] + A[2,3]*B[3,2]) - C[2,3] += _add(A[2,2]*B[2,3] + A[2,3]*B[3,3]) - C[2,4] += _add(A[2,3]*B[3,4]) for j in 3:n-2 - Ajj₋1 = Al[j-1] - Ajj = Ad[j] + Aj₋2j₋1 = Au[j-2] + Aj₋1j = Au[j-1] Ajj₊1 = Au[j] - Bj₋1j₋2 = Bl[j-2] - Bj₋1j₋1 = Bd[j-1] + Aj₋1j₋1 = Ad[j-1] + Ajj = Ad[j] + Aj₊1j₊1 = Ad[j+1] + Ajj₋1 = Al[j-1] + Aj₊1j = Al[j] + Aj₊2j₊1 = Al[j+1] Bj₋1j = Bu[j-1] - Bjj₋1 = Bl[j-1] Bjj = Bd[j] - Bjj₊1 = Bu[j] Bj₊1j = Bl[j] - Bj₊1j₊1 = Bd[j+1] - Bj₊1j₊2 = Bu[j+1] - C[j,j-2] += _add( Ajj₋1*Bj₋1j₋2) - C[j, j-1] += _add(Ajj₋1*Bj₋1j₋1 + Ajj*Bjj₋1) - C[j, j ] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj + Ajj₊1*Bj₊1j) - C[j, j+1] += _add(Ajj *Bjj₊1 + Ajj₊1*Bj₊1j₊1) - C[j, j+2] += _add(Ajj₊1*Bj₊1j₊2) + + C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) + C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) + C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj + Ajj₊1*Bj₊1j) + C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) + C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) end - # row before last of C - C[n-1,n-3] += _add(A[n-1,n-2]*B[n-2,n-3]) - C[n-1,n-2] += _add(A[n-1,n-1]*B[n-1,n-2] + A[n-1,n-2]*B[n-2,n-2]) - C[n-1,n-1] += _add(A[n-1,n-2]*B[n-2,n-1] + A[n-1,n-1]*B[n-1,n-1] + A[n-1,n]*B[n,n-1]) - C[n-1,n ] += _add(A[n-1,n-1]*B[n-1,n ] + A[n-1, n]*B[n ,n ]) - # last row of C - C[n,n-2] += _add(A[n,n-1]*B[n-1,n-2]) - C[n,n-1] += _add(A[n,n-1]*B[n-1,n-1] + A[n,n]*B[n,n-1]) - C[n,n ] += _add(A[n,n-1]*B[n-1,n ] + A[n,n]*B[n,n ]) - end # inbounds + end + C +end +function __bibimul!(C, A, B::Bidiagonal, _add) + n = size(A,1) + Al = _diag(A, -1) + Ad = _diag(A, 0) + Au = _diag(A, 1) + Bd = _diag(B, 0) + if B.uplo == 'U' + Bu = _diag(B, 1) + @inbounds begin + for j in 3:n-2 + Aj₋2j₋1 = Au[j-2] + Aj₋1j = Au[j-1] + Aj₋1j₋1 = Ad[j-1] + Ajj = Ad[j] + Ajj₋1 = Al[j-1] + Aj₊1j = Al[j] + Bj₋1j = Bu[j-1] + Bjj = Bd[j] + + C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) + C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) + C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj) + C[j+1, j] += _add(Aj₊1j*Bjj) + end + end + else # B.uplo == 'L' + Bl = _diag(B, -1) + @inbounds begin + for j in 3:n-2 + Aj₋1j = Au[j-1] + Ajj₊1 = Au[j] + Ajj = Ad[j] + Aj₊1j₊1 = Ad[j+1] + Aj₊1j = Al[j] + Aj₊2j₊1 = Al[j+1] + Bjj = Bd[j] + Bj₊1j = Bl[j] + + C[j-1, j] += _add(Aj₋1j*Bjj) + C[j, j] += _add(Ajj*Bjj + Ajj₊1*Bj₊1j) + C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) + C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) + end + end + end + C +end +function __bibimul!(C, A::Bidiagonal, B, _add) + n = size(A,1) + Bl = _diag(B, -1) + Bd = _diag(B, 0) + Bu = _diag(B, 1) + Ad = _diag(A, 0) + if A.uplo == 'U' + Au = _diag(A, 1) + @inbounds begin + for j in 3:n-2 + Aj₋2j₋1 = Au[j-2] + Aj₋1j = Au[j-1] + Ajj₊1 = Au[j] + Aj₋1j₋1 = Ad[j-1] + Ajj = Ad[j] + Aj₊1j₊1 = Ad[j+1] + Bj₋1j = Bu[j-1] + Bjj = Bd[j] + Bj₊1j = Bl[j] + + C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) + C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) + C[j, j] += _add(Ajj*Bjj + Ajj₊1*Bj₊1j) + C[j+1, j] += _add(Aj₊1j₊1*Bj₊1j) + end + end + else # A.uplo == 'L' + Al = _diag(A, -1) + @inbounds begin + for j in 3:n-2 + Aj₋1j₋1 = Ad[j-1] + Ajj = Ad[j] + Aj₊1j₊1 = Ad[j+1] + Ajj₋1 = Al[j-1] + Aj₊1j = Al[j] + Aj₊2j₊1 = Al[j+1] + Bj₋1j = Bu[j-1] + Bjj = Bd[j] + Bj₊1j = Bl[j] + + C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j) + C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj) + C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) + C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) + end + end + end + C +end +function __bibimul!(C, A::Bidiagonal, B::Bidiagonal, _add) + n = size(A,1) + Ad = _diag(A, 0) + Bd = _diag(B, 0) + if A.uplo == 'U' && B.uplo == 'U' + Au = _diag(A, 1) + Bu = _diag(B, 1) + @inbounds begin + for j in 3:n-2 + Aj₋2j₋1 = Au[j-2] + Aj₋1j = Au[j-1] + Aj₋1j₋1 = Ad[j-1] + Ajj = Ad[j] + Bj₋1j = Bu[j-1] + Bjj = Bd[j] + + C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) + C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) + C[j, j] += _add(Ajj*Bjj) + end + end + elseif A.uplo == 'U' && B.uplo == 'L' + Au = _diag(A, 1) + Bl = _diag(B, -1) + @inbounds begin + for j in 3:n-2 + Aj₋1j = Au[j-1] + Ajj₊1 = Au[j] + Ajj = Ad[j] + Aj₊1j₊1 = Ad[j+1] + Bjj = Bd[j] + Bj₊1j = Bl[j] + + C[j-1, j] += _add(Aj₋1j*Bjj) + C[j, j] += _add(Ajj*Bjj + Ajj₊1*Bj₊1j) + C[j+1, j] += _add(Aj₊1j₊1*Bj₊1j) + end + end + elseif A.uplo == 'L' && B.uplo == 'U' + Al = _diag(A, -1) + Bu = _diag(B, 1) + @inbounds begin + for j in 3:n-2 + Aj₋1j₋1 = Ad[j-1] + Ajj = Ad[j] + Ajj₋1 = Al[j-1] + Aj₊1j = Al[j] + Bj₋1j = Bu[j-1] + Bjj = Bd[j] + + C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j) + C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj) + C[j+1, j] += _add(Aj₊1j*Bjj) + end + end + else # A.uplo == 'L' && B.uplo == 'L' + Al = _diag(A, -1) + Bl = _diag(B, -1) + @inbounds begin + for j in 3:n-2 + Ajj = Ad[j] + Aj₊1j₊1 = Ad[j+1] + Aj₊1j = Al[j] + Aj₊2j₊1 = Al[j+1] + Bjj = Bd[j] + Bj₊1j = Bl[j] + + C[j, j] += _add(Ajj*Bjj) + C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) + C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) + end + end + end C end @@ -744,7 +932,52 @@ function _mul!(C::AbstractVecOrMat, A::BiTriSym, B::AbstractVecOrMat, _add::MulA nB = size(B,2) (iszero(nA) || iszero(nB)) && return C iszero(_add.alpha) && return _rmul_or_fill!(C, _add.beta) - nA <= 3 && return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) + if nA <= 3 + # naive multiplication + for I in CartesianIndices(C) + col = Base.tail(Tuple(I)) + _modify!(_add, sum(A[I[1], k] * B[k, col...] for k in axes(A,2)), C, I) + end + return C + end + _mul_bitrisym!(C, A, B, _add) +end +function _mul_bitrisym!(C::AbstractVecOrMat, A::Bidiagonal, B::AbstractVecOrMat, _add::MulAddMul) + nA = size(A,1) + nB = size(B,2) + d = A.dv + if A.uplo == 'U' + u = A.ev + @inbounds begin + for j = 1:nB + b₀, b₊ = B[1, j], B[2, j] + _modify!(_add, d[1]*b₀ + u[1]*b₊, C, (1, j)) + for i = 2:nA - 1 + b₀, b₊ = b₊, B[i + 1, j] + _modify!(_add, d[i]*b₀ + u[i]*b₊, C, (i, j)) + end + _modify!(_add, d[nA]*b₊, C, (nA, j)) + end + end + else + l = A.ev + @inbounds begin + for j = 1:nB + b₀, b₊ = B[1, j], B[2, j] + _modify!(_add, d[1]*b₀, C, (1, j)) + for i = 2:nA - 1 + b₋, b₀, b₊ = b₀, b₊, B[i + 1, j] + _modify!(_add, l[i - 1]*b₋ + d[i]*b₀, C, (i, j)) + end + _modify!(_add, l[nA - 1]*b₀ + d[nA]*b₊, C, (nA, j)) + end + end + end + C +end +function _mul_bitrisym!(C::AbstractVecOrMat, A::TriSym, B::AbstractVecOrMat, _add::MulAddMul) + nA = size(A,1) + nB = size(B,2) l = _diag(A, -1) d = _diag(A, 0) u = _diag(A, 1) @@ -767,10 +1000,10 @@ function _mul!(C::AbstractMatrix, A::AbstractMatrix, B::TriSym, _add::MulAddMul) check_A_mul_B!_sizes(size(C), size(A), size(B)) n = size(A,1) m = size(B,2) - (iszero(m) || iszero(n)) && return C - iszero(_add.alpha) && return _rmul_or_fill!(C, _add.beta) - if n <= 3 || m <= 1 - return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) + (iszero(_add.alpha) || iszero(m)) && return _rmul_or_fill!(C, _add.beta) + if m == 1 + B11 = B[1,1] + return mul!(C, A, B11, _add.alpha, _add.beta) end Bl = _diag(B, -1) Bd = _diag(B, 0) @@ -804,21 +1037,18 @@ function _mul!(C::AbstractMatrix, A::AbstractMatrix, B::Bidiagonal, _add::MulAdd m, n = size(A) (iszero(m) || iszero(n)) && return C iszero(_add.alpha) && return _rmul_or_fill!(C, _add.beta) - if size(A, 1) <= 3 || size(B, 2) <= 1 - return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) - end @inbounds if B.uplo == 'U' + for j in n:-1:2, i in 1:m + _modify!(_add, A[i,j] * B.dv[j] + A[i,j-1] * B.ev[j-1], C, (i, j)) + end for i in 1:m - for j in n:-1:2 - _modify!(_add, A[i,j] * B.dv[j] + A[i,j-1] * B.ev[j-1], C, (i, j)) - end _modify!(_add, A[i,1] * B.dv[1], C, (i, 1)) end else # uplo == 'L' + for j in 1:n-1, i in 1:m + _modify!(_add, A[i,j] * B.dv[j] + A[i,j+1] * B.ev[j], C, (i, j)) + end for i in 1:m - for j in 1:n-1 - _modify!(_add, A[i,j] * B.dv[j] + A[i,j+1] * B.ev[j], C, (i, j)) - end _modify!(_add, A[i,n] * B.dv[n], C, (i, n)) end end @@ -834,9 +1064,17 @@ function _dibimul!(C, A, B, _add) check_A_mul_B!_sizes(size(C), size(A), size(B)) n = size(A,1) iszero(n) && return C - n <= 3 && return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) - _rmul_or_fill!(C, _add.beta) # see the same use above + # ensure that we fill off-band elements in the destination + _rmul_or_fill!(C, _add.beta) iszero(_add.alpha) && return C + if n <= 3 + # For simplicity, use a naive multiplication for small matrices + # that loops over all elements. + for I in CartesianIndices(C) + C[I] += _add(A.diag[I[1]] * B[I[1], I[2]]) + end + return C + end Ad = A.diag Bl = _diag(B, -1) Bd = _diag(B, 0) @@ -870,7 +1108,8 @@ function _dibimul!(C::AbstractMatrix, A::Diagonal, B::Bidiagonal, _add) check_A_mul_B!_sizes(size(C), size(A), size(B)) n = size(A,1) iszero(n) && return C - _rmul_or_fill!(C, _add.beta) # see the same use above + # ensure that we fill off-band elements in the destination + _rmul_or_fill!(C, _add.beta) iszero(_add.alpha) && return C Ad = A.diag Bdv, Bev = B.dv, B.ev diff --git a/stdlib/LinearAlgebra/test/addmul.jl b/stdlib/LinearAlgebra/test/addmul.jl index 72fdf687bf5c3..208fa930e8ee1 100644 --- a/stdlib/LinearAlgebra/test/addmul.jl +++ b/stdlib/LinearAlgebra/test/addmul.jl @@ -217,4 +217,26 @@ end end end +@testset "issue #55727" begin + C = zeros(1,1) + @testset "$(nameof(typeof(A)))" for A in Any[Diagonal([NaN]), + Bidiagonal([NaN], Float64[], :U), + Bidiagonal([NaN], Float64[], :L), + SymTridiagonal([NaN], Float64[]), + Tridiagonal(Float64[], [NaN], Float64[]), + ] + @testset "$(nameof(typeof(B)))" for B in Any[ + Diagonal([1.0]), + Bidiagonal([1.0], Float64[], :U), + Bidiagonal([1.0], Float64[], :L), + SymTridiagonal([1.0], Float64[]), + Tridiagonal(Float64[], [1.0], Float64[]), + ] + C .= 0 + @test mul!(C, A, B, 0.0, false)[] === 0.0 + @test mul!(C, B, A, 0.0, false)[] === 0.0 + end + end +end + end # module diff --git a/stdlib/LinearAlgebra/test/bidiag.jl b/stdlib/LinearAlgebra/test/bidiag.jl index ef50658a642fb..edad29d4ec180 100644 --- a/stdlib/LinearAlgebra/test/bidiag.jl +++ b/stdlib/LinearAlgebra/test/bidiag.jl @@ -1048,4 +1048,71 @@ end @test mul!(similar(D), B, D) == mul!(similar(D), D, B) == B * D end +@testset "mul for small matrices" begin + @testset for n in 0:6 + D = Diagonal(rand(n)) + v = rand(n) + @testset for uplo in (:L, :U) + B = Bidiagonal(rand(n), rand(max(n-1,0)), uplo) + M = Matrix(B) + + @test B * v ≈ M * v + @test mul!(similar(v), B, v) ≈ M * v + @test mul!(ones(size(v)), B, v, 2, 3) ≈ M * v * 2 .+ 3 + + @test B * B ≈ M * M + @test mul!(similar(B, size(B)), B, B) ≈ M * M + @test mul!(ones(size(B)), B, B, 2, 4) ≈ M * M * 2 .+ 4 + + for m in 0:6 + AL = rand(m,n) + AR = rand(n,m) + @test AL * B ≈ AL * M + @test B * AR ≈ M * AR + @test mul!(similar(AL), AL, B) ≈ AL * M + @test mul!(similar(AR), B, AR) ≈ M * AR + @test mul!(ones(size(AL)), AL, B, 2, 4) ≈ AL * M * 2 .+ 4 + @test mul!(ones(size(AR)), B, AR, 2, 4) ≈ M * AR * 2 .+ 4 + end + + @test B * D ≈ M * D + @test D * B ≈ D * M + @test mul!(similar(B), B, D) ≈ M * D + @test mul!(similar(B), B, D) ≈ M * D + @test mul!(similar(B, size(B)), D, B) ≈ D * M + @test mul!(similar(B, size(B)), B, D) ≈ M * D + @test mul!(ones(size(B)), D, B, 2, 4) ≈ D * M * 2 .+ 4 + @test mul!(ones(size(B)), B, D, 2, 4) ≈ M * D * 2 .+ 4 + end + BL = Bidiagonal(rand(n), rand(max(0, n-1)), :L) + ML = Matrix(BL) + BU = Bidiagonal(rand(n), rand(max(0, n-1)), :U) + MU = Matrix(BU) + T = Tridiagonal(zeros(max(0, n-1)), zeros(n), zeros(max(0, n-1))) + @test mul!(T, BL, BU) ≈ ML * MU + @test mul!(T, BU, BL) ≈ MU * ML + T = Tridiagonal(ones(max(0, n-1)), ones(n), ones(max(0, n-1))) + @test mul!(copy(T), BL, BU, 2, 3) ≈ ML * MU * 2 + T * 3 + @test mul!(copy(T), BU, BL, 2, 3) ≈ MU * ML * 2 + T * 3 + end + + n = 4 + arr = SizedArrays.SizedArray{(2,2)}(reshape([1:4;],2,2)) + for B in ( + Bidiagonal(fill(arr,n), fill(arr,n-1), :L), + Bidiagonal(fill(arr,n), fill(arr,n-1), :U), + ) + @test B * B ≈ Matrix(B) * Matrix(B) + BL = Bidiagonal(fill(arr,n), fill(arr,n-1), :L) + BU = Bidiagonal(fill(arr,n), fill(arr,n-1), :U) + @test BL * B ≈ Matrix(BL) * Matrix(B) + @test BU * B ≈ Matrix(BU) * Matrix(B) + @test B * BL ≈ Matrix(B) * Matrix(BL) + @test B * BU ≈ Matrix(B) * Matrix(BU) + D = Diagonal(fill(arr,n)) + @test D * B ≈ Matrix(D) * Matrix(B) + @test B * D ≈ Matrix(B) * Matrix(D) + end +end + end # module TestBidiagonal diff --git a/stdlib/LinearAlgebra/test/tridiag.jl b/stdlib/LinearAlgebra/test/tridiag.jl index 3330fa682fe5e..15ac7f9f2147f 100644 --- a/stdlib/LinearAlgebra/test/tridiag.jl +++ b/stdlib/LinearAlgebra/test/tridiag.jl @@ -970,4 +970,75 @@ end @test sprint(show, S) == "SymTridiagonal($(repr(diag(S))), $(repr(diag(S,1))))" end +@testset "mul for small matrices" begin + @testset for n in 0:6 + for T in ( + Tridiagonal(rand(max(n-1,0)), rand(n), rand(max(n-1,0))), + SymTridiagonal(rand(n), rand(max(n-1,0))), + ) + M = Matrix(T) + @test T * T ≈ M * M + @test mul!(similar(T, size(T)), T, T) ≈ M * M + @test mul!(ones(size(T)), T, T, 2, 4) ≈ M * M * 2 .+ 4 + + for m in 0:6 + AR = rand(n,m) + AL = rand(m,n) + @test AL * T ≈ AL * M + @test T * AR ≈ M * AR + @test mul!(similar(AL), AL, T) ≈ AL * M + @test mul!(similar(AR), T, AR) ≈ M * AR + @test mul!(ones(size(AL)), AL, T, 2, 4) ≈ AL * M * 2 .+ 4 + @test mul!(ones(size(AR)), T, AR, 2, 4) ≈ M * AR * 2 .+ 4 + end + + v = rand(n) + @test T * v ≈ M * v + @test mul!(similar(v), T, v) ≈ M * v + + D = Diagonal(rand(n)) + @test T * D ≈ M * D + @test D * T ≈ D * M + @test mul!(Tridiagonal(similar(T)), D, T) ≈ D * M + @test mul!(Tridiagonal(similar(T)), T, D) ≈ M * D + @test mul!(similar(T, size(T)), D, T) ≈ D * M + @test mul!(similar(T, size(T)), T, D) ≈ M * D + @test mul!(ones(size(T)), D, T, 2, 4) ≈ D * M * 2 .+ 4 + @test mul!(ones(size(T)), T, D, 2, 4) ≈ M * D * 2 .+ 4 + + for uplo in (:U, :L) + B = Bidiagonal(rand(n), rand(max(0, n-1)), uplo) + @test T * B ≈ M * B + @test B * T ≈ B * M + if n <= 2 + @test mul!(Tridiagonal(similar(T)), B, T) ≈ B * M + @test mul!(Tridiagonal(similar(T)), T, B) ≈ M * B + end + @test mul!(similar(T, size(T)), B, T) ≈ B * M + @test mul!(similar(T, size(T)), T, B) ≈ M * B + @test mul!(ones(size(T)), B, T, 2, 4) ≈ B * M * 2 .+ 4 + @test mul!(ones(size(T)), T, B, 2, 4) ≈ M * B * 2 .+ 4 + end + end + end + + n = 4 + arr = SizedArrays.SizedArray{(2,2)}(reshape([1:4;],2,2)) + for T in ( + SymTridiagonal(fill(arr,n), fill(arr,n-1)), + Tridiagonal(fill(arr,n-1), fill(arr,n), fill(arr,n-1)), + ) + @test T * T ≈ Matrix(T) * Matrix(T) + BL = Bidiagonal(fill(arr,n), fill(arr,n-1), :L) + BU = Bidiagonal(fill(arr,n), fill(arr,n-1), :U) + @test BL * T ≈ Matrix(BL) * Matrix(T) + @test BU * T ≈ Matrix(BU) * Matrix(T) + @test T * BL ≈ Matrix(T) * Matrix(BL) + @test T * BU ≈ Matrix(T) * Matrix(BU) + D = Diagonal(fill(arr,n)) + @test D * T ≈ Matrix(D) * Matrix(T) + @test T * D ≈ Matrix(T) * Matrix(D) + end +end + end # module TestTridiagonal