-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy path3d_frame.jl
90 lines (69 loc) · 3.29 KB
/
3d_frame.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# This file is a part of JuliaFEM.
# License is MIT: see https://github.com/JuliaFEM/JuliaFEM.jl/blob/master/LICENSE.md
# # Natural frequency analysis of 3d frame structure
# For general information about Euler-Bernoulli beam theory, see
# [this](https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory)
# wikipedia page.
# The model is a 3d frame, shown in picture.
# ![](3d_frame/model.png)
using JuliaFEM, LinearAlgebra
# Reading mesh
datadir = Pkg.dir("JuliaFEM", "examples", "3d_frame")
mesh = aster_read_mesh(joinpath(datadir, "model.med"))
println("Number of nodes in a model: ", length(mesh.nodes))
# Create beam elements. For 3d model, we need to define at least
# [Young's modulus](https://en.wikipedia.org/wiki/Young%27s_modulus),
# [shear modulus](https://en.wikipedia.org/wiki/Shear_modulus),
# [density](https://en.wikipedia.org/wiki/Density)
# cross-section area, moment of inertia in local coordinate
# system and polar moment of inertia.
beam_elements = create_elements(mesh, "FRAME")
@info("Number of elements: ", length(beam_elements))
update!(beam_elements, "youngs modulus", 210.0e6)
update!(beam_elements, "shear modulus", 84.0e6)
update!(beam_elements, "density", 7850.0e-3)
update!(beam_elements, "cross-section area", 20.0e-2)
update!(beam_elements, "torsional moment of inertia 1", 10.0e-5)
update!(beam_elements, "torsional moment of inertia 2", 10.0e-5)
update!(beam_elements, "polar moment of inertia", 30.0e-5)
# The direction of beam is defined in same way than in ABAQUS.
# That is, we have a tangent direction and one normal direction.
# The third direction is then cross product of tangent and normal.
# Because the second area moment is same in both directions, we can
# choose normal direction freely.
for element in beam_elements
X1, X2 = element("geometry", 0.0)
t = (X2-X1)/norm(X2-X1)
I = [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]
k = indmax([norm(cross(t, I[:,k])) for k in 1:3])
n = cross(t, I[:,k])/norm(cross(t, I[:,k]))
update!(element, "normal", n)
end
# Create boundary conditions: fix all degrees of freedom for nodes in
# a set FIXED. Here we first create elements of type `Poi1` for each
# node j in set FIXED, update geometry field and then create new fields
# `fixed displacmeent 1`, `fixed displacement 2`, and so on, where the
# displacement / rotation is prescribed.
bc_elements = [Element(Poi1, [j]) for j in mesh.node_sets[:FIXED]]
update!(bc_elements, "geometry", mesh.nodes)
for i=1:3
update!(bc_elements, "fixed displacement $i", 0.0)
update!(bc_elements, "fixed rotation $i", 0.0)
end
# Create a problem, containing beam elements and boundary conditions:
frame = Problem(Beam, "3d frame", 6)
add_elements!(frame, beam_elements)
add_elements!(frame, bc_elements)
# Perform modal analysis
analysis = Analysis(Modal)
xdmf = Xdmf(joinpath(datadir, "3d_frame_results"); overwrite=true)
add_results_writer!(analysis, xdmf)
add_problems!(analysis, frame)
run!(analysis)
close(xdmf)
# Each `Analysis` can have properties, e.g. time, maximum number of iterations,
# convergence tolerance and so on. Eigenvalues of calculation are stored as a
# properties of analysis:
freqs = sqrt.(step.properties.eigvals) / (2*pi)
println("Natural frequencies [Hz]: $(round.(freqs, 2))")
# [![mode5](3d_frame/natfreq.png)](https://www.youtube.com/watch?v=GzktCqeASmo)