-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinfrange.jl
346 lines (256 loc) · 11.6 KB
/
infrange.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# This file is mmodified from Julia. License is MIT: https://julialang.org/license
(:)(start::T, stop::Infinity) where {T<:Integer} = InfUnitRange{T}(start)
function (:)(start::T, step::T, stop::OrientedInfinity) where {T<:Real}
sign(step) == sign(stop) || throw(ArgumentError("InfStepRange must have infinite length"))
InfStepRange(start, step)
end
(:)(start::T, step::Real, stop::OrientedInfinity) where {T<:Real} = (:)(promote(start, step)..., stop)
(:)(start::Real, step, stop::Infinity)= (:)(start, step, OrientedInfinity(stop))
# AbstractFloat specializations
(:)(a::T, b::Union{Infinity,OrientedInfinity}) where {T<:Real} = (:)(a, T(1), b)
function (:)(start::T, step::T, stop::Infinity) where {T<:Real}
sign(step) == sign(stop) || throw(ArgumentError("InfStepRange must have infinite length"))
InfStepRange(start,step)
end
# this is needed for showarray
(:)(::Infinity, ::Infinity) = 1:0
# Range of a given length: range(a, [step=s,] length=l), no stop
_range(a::Real, ::Nothing, ::Nothing, len::Infinity) = InfUnitRange{typeof(a)}(a)
_range(a::AbstractFloat, ::Nothing, ::Nothing, len::Infinity) = _range(a, oftype(a, 1), nothing, len)
_rangestyle(::Ordered, ::ArithmeticWraps, a::T, step::S, len::Infinity) where {T,S} =
InfStepRange{T,S}(a, step)
_range(a::T, st::T, ::Nothing, ::Infinity) where T<:Union{Float16,Float32,Float64} =
InfStepRange{T,T}(a, st)
# Construct range for rational start=start_n/den, step=step_n/den
floatrange(::Type{T}, start_n::Integer, step_n::Integer, ::Infinity, den::Integer) where T =
InfStepRange(T(start_n)/den,T(step_n)/den)
floatrange(a::AbstractFloat, st::AbstractFloat, ::Infinity, divisor::AbstractFloat) =
InfStepRange(a/divisor,st/divisor)
## 1-dimensional ranges ##
struct InfStepRange{T,S} <: OrdinalRange{T,S}
start::T
step::S
function InfStepRange{T,S}(start::T, step::S) where {T,S}
new{T,S}(start, step)
end
end
InfStepRange(start::T, step::S) where {T,S} = InfStepRange{T,S}(start,step)
InfStepRange{T,S}(start, step) where {T,S} = InfStepRange{T,S}(convert(T,start),convert(S,step))
abstract type AbstractInfUnitRange{T<:Real} <: AbstractUnitRange{T} end
done(r::AbstractInfUnitRange{T}, i) where {T} = false
unitrange_last(start, stop::Infinity) = ∞
struct InfUnitRange{T<:Real} <: AbstractInfUnitRange{T}
start::T
end
InfUnitRange(a::InfUnitRange) = a
InfUnitRange{T}(a::AbstractInfUnitRange) where T<:Real = InfUnitRange{T}(first(a))
AbstractArray{T}(a::InfUnitRange) where T<:Real = InfUnitRange{T}(a.start)
AbstractVector{T}(a::InfUnitRange) where T<:Real = InfUnitRange{T}(a.start)
"""
OneToInf(n)
Define an `AbstractInfUnitRange` that behaves like `1:∞`, with the added
distinction that the limits are guaranteed (by the type system) to
be 1 and ∞.
"""
struct OneToInf{T<:Integer} <: AbstractInfUnitRange{T} end
OneToInf() = OneToInf{Int}()
AbstractArray{T}(a::OneToInf) where T<:Integer = OneToInf{T}()
AbstractVector{T}(a::OneToInf) where T<:Integer = OneToInf{T}()
AbstractArray{T}(a::OneToInf) where T<:Real = InfUnitRange{T}(a)
AbstractVector{T}(a::OneToInf) where T<:Real = InfUnitRange{T}(a)
(==)(::OneToInf, ::OneToInf) = true
## interface implementations
const InfRanges{T} = Union{InfStepRange{T},AbstractInfUnitRange{T}}
size(r::InfRanges) = (∞,)
isempty(r::InfRanges) = false
step(r::InfStepRange) = r.step
length(r::InfRanges) = ∞
unsafe_length(r::InfRanges) = ∞
first(r::OneToInf{T}) where {T} = oneunit(T)
last(r::AbstractInfUnitRange) = ∞
last(r::InfStepRange) = sign(step(r))*∞
minimum(r::InfUnitRange) = first(r)
maximum(r::InfUnitRange) = last(r)
## iteration
start(r::InfStepRange) = oftype(r.start + r.step, r.start)
next(r::InfStepRange{T}, i) where {T} = (convert(T,i), i+r.step)
start(r::InfUnitRange{T}) where {T} = oftype(r.start + oneunit(T), r.start)
start(r::OneToInf{T}) where {T} = oneunit(T)
done(r::InfStepRange{T}, i) where {T} = false
## indexing
_sub2ind(inds::Tuple{OneToInf}, i::Integer) = i
function getindex(v::InfUnitRange{T}, i::Integer) where T
@boundscheck i > 0 || Base.throw_boundserror(v, i)
convert(T, first(v) + i - 1)
end
function getindex(v::OneToInf{T}, i::Integer) where T
@boundscheck i > 0 || Base.throw_boundserror(v, i)
convert(T, i)
end
function getindex(v::InfStepRange{T}, i::Integer) where T
@boundscheck i > 0 || Base.throw_boundserror(v, i)
convert(T, first(v) + (i - 1)*step(v))
end
function getindex(r::AbstractInfUnitRange, s::AbstractInfUnitRange{<:Integer})
f = first(r)
@boundscheck first(s) ≥ 1 || Base.throw_boundserror(r, first(s))
st = oftype(f, f + first(s)-1)
st:∞
end
function getindex(r::AbstractInfUnitRange, s::AbstractUnitRange{<:Integer})
f = first(r)
@boundscheck first(s) ≥ 1 || Base.throw_boundserror(r, first(s))
st = oftype(f, f + first(s)-1)
range(st; length=length(s))
end
getindex(r::OneToInf{T}, s::OneTo) where T = OneTo(T(s.stop))
function getindex(r::AbstractInfUnitRange, s::InfStepRange{<:Integer})
@_inline_meta
@boundscheck (step(s) > 0 && first(s) ≥ 1) || throw(BoundsError(r, minimum(s)))
st = oftype(first(r), first(r) + s.start-1)
new_step = step(s)
st:new_step:sign(new_step)*∞
end
function getindex(r::AbstractInfUnitRange, s::StepRange{<:Integer})
@_inline_meta
@boundscheck minimum(s) ≥ 1 || throw(BoundsError(r, minimum(s)))
st = oftype(first(r), first(r) + s.start-1)
range(st; step=step(s), length=length(s))
end
function getindex(r::InfStepRange, s::InfRanges{<:Integer})
@_inline_meta
@boundscheck (step(s) > 0 && first(s) ≥ 1) || throw(BoundsError(r, minimum(s)))
st = oftype(r.start, r.start + (first(s)-1)*step(r))
new_step = step(r)*step(s)
st:new_step:sign(new_step)*∞
end
function getindex(r::InfStepRange, s::AbstractRange{<:Integer})
@_inline_meta
@boundscheck isempty(s) || minimum(s) ≥ 1 || throw(BoundsError(r, minimum(s)))
st = oftype(r.start, r.start + (first(s)-1)*step(r))
range(st; step=step(r)*step(s), length=length(s))
end
show(io::IO, r::InfUnitRange) = print(io, repr(first(r)), ':', repr(last(r)))
show(io::IO, r::OneToInf) = print(io, "OneToInf()")
intersect(r::OneToInf{T}, s::OneToInf{V}) where {T,V} = OneToInf{promote_type(T,V)}()
intersect(r::OneToInf{T}, s::OneTo{T}) where T = s
intersect(r::OneTo{T}, s::OneToInf{T}) where T = r
intersect(r::AbstractInfUnitRange{<:Integer}, s::AbstractInfUnitRange{<:Integer}) =
InfUnitRange(max(first(r),first(s)))
intersect(r::AbstractInfUnitRange{<:Integer}, s::AbstractUnitRange{<:Integer}) =
max(first(r),first(s)):last(s)
intersect(r::AbstractUnitRange{<:Integer}, s::AbstractInfUnitRange{<:Integer}) =
intersect(s, r)
intersect(i::Integer, r::AbstractInfUnitRange{<:Integer}) =
i < first(r) ? (first(r):i) : (i:i)
intersect(r::AbstractInfUnitRange{<:Integer}, i::Integer) = intersect(i, r)
function intersect(r::AbstractInfUnitRange{<:Integer}, s::StepRange{<:Integer})
if isempty(s)
range(first(r); length=0)
elseif step(s) == 0
intersect(first(s), r)
elseif step(s) < 0
intersect(r, reverse(s))
else
sta = first(s)
ste = step(s)
sto = last(s)
lo = first(r)
i0 = max(sta, lo + mod(sta - lo, ste))
i1 = sto
i0:ste:i1
end
end
intersect(r::StepRange{<:Integer}, s::AbstractInfUnitRange{<:Integer}) =
intersect(s, r)
function intersect(r::InfStepRange, s::InfStepRange)
sign(step(r)) == sign(step(s)) || throw(ArgumentError("Can only take intersection of infinite ranges"))
start1 = first(r)
step1 = step(r)
start2 = first(s)
step2 = step(s)
a = lcm(step1, step2)
g, x, y = gcdx(step1, step2)
if rem(start1 - start2, g) != 0
# Unaligned, no overlap possible.
throw(ArgumentError("Cannot take intersection of InfStepRange that has no elements"))
end
z = div(start1 - start2, g)
b = start1 - x * z * step1
# Possible points of the intersection of r and s are
# ..., b-2a, b-a, b, b+a, b+2a, ...
# Determine where in the sequence to start and stop.
m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
m:a:∞
end
intersect(r::InfStepRange, s::AbstractInfUnitRange) = intersect(r, InfStepRange(s))
intersect(r::AbstractInfUnitRange, s::InfStepRange) = intersect(InfStepRange(r), s)
function intersect(r::InfStepRange, s::StepRange)
if isempty(s)
return range(first(r); step=step(r), length=0)
elseif step(s) < 0
return intersect(r, reverse(s))
end
start1 = first(r)
step1 = step(r)
start2 = first(s)
step2 = step(s)
stop2 = last(s)
a = lcm(step1, step2)
g, x, y = gcdx(step1, step2)
if rem(start1 - start2, g) != 0
# Unaligned, no overlap possible.
return range(start1; step=a, length=0)
end
z = div(start1 - start2, g)
b = start1 - x * z * step1
# Possible points of the intersection of r and s are
# ..., b-2a, b-a, b, b+a, b+2a, ...
# Determine where in the sequence to start and stop.
m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
n = stop2 - mod(stop2 - b, a)
m:a:n
end
intersect(s::StepRange, r::InfStepRange) = intersect(r, s)
intersect(s::AbstractRange, r::InfStepRange) = intersect(StepRange(s), r)
intersect(s::InfStepRange, r::AbstractRange) = intersect(s, StepRange(r))
promote_rule(a::Type{InfUnitRange{T1}}, b::Type{InfUnitRange{T2}}) where {T1,T2} =
InfUnitRange{promote_type(T1,T2)}
InfUnitRange{T}(r::InfUnitRange{T}) where {T<:Real} = r
InfUnitRange{T}(r::UnitRange) where {T<:Real} = InfUnitRange{T}(r.start)
promote_rule(a::Type{OneToInf{T1}}, b::Type{OneToInf{T2}}) where {T1,T2} =
OneToInf{promote_type(T1,T2)}
OneToInf{T}(r::OneToInf{T}) where {T<:Integer} = r
OneToInf{T}(r::OneToInf) where {T<:Integer} = OneToInf{T}()
promote_rule(::Type{InfStepRange{T1a,T1b}}, ::Type{InfStepRange{T2a,T2b}}) where {T1a,T1b,T2a,T2b} =
InfStepRange{promote_type(T1a,T2a), promote_type(T1b,T2b)}
promote_rule(a::Type{InfStepRange{T1a,T1b}}, ::Type{UR}) where {T1a,T1b,UR<:AbstractInfUnitRange} =
promote_rule(a, InfStepRange{eltype(UR), eltype(UR)})
InfStepRange{T1,T2}(r::InfStepRange{T1,T2}) where {T1,T2} = r
InfStepRange{T1,T2}(r::AbstractRange) where {T1,T2} =
InfStepRange{T1,T2}(convert(T1, first(r)), convert(T2, step(r)))
InfStepRange(r::InfUnitRange{T}) where {T} =
InfStepRange{T,T}(first(r), step(r))
(::Type{InfStepRange{T1,T2} where T1})(r::AbstractRange) where {T2} =
InfStepRange{eltype(r),T2}(r)
## sorting ##
sum(r::InfRanges{<:Real}) = last(r)
mean(r::InfRanges{<:Real}) = last(r)
median(r::InfRanges{<:Real}) = last(r)
in(x::Union{Infinity,OrientedInfinity}, r::InfRanges) = false # never reach it...
in(x::Infinity, r::InfRanges{<:Integer}) = false # never reach it...
in(x::Real, r::InfRanges{<:Real}) = _in_range(x, r)
# This method needs to be defined separately since -(::T, ::T) can be implemented
# even if -(::T, ::Real) is not
in(x::T, r::InfRanges{T}) where {T} = _in_range(x, r)
in(x::Integer, r::AbstractInfUnitRange{<:Integer}) = (first(r) <= x)
in(x::Real, r::InfRanges{T}) where {T<:Integer} =
isinteger(x) && !isempty(r) && ifelse(step(r) > 0, x ≥ first(r), x ≤ first(r)) &&
(mod(convert(T,x),step(r))-mod(first(r),step(r)) == 0)
# Addition/subtraction of ranges
-(r1::OneToInf{T}, r2::OneToInf{V}) where {T,V} = Zeros{promote_type(T,V)}(∞)
-(r1::AbstractInfUnitRange, r2::AbstractInfUnitRange) = Fill(first(r1)-first(r2), ∞)
# The following are hacks needed for some Base support
OneTo(::Infinity) = OneToInf()
UnitRange(start::Integer, ::Infinity) = InfUnitRange(start)
UnitRange{T}(start::Integer, ::Infinity) where T<:Real = InfUnitRange{T}(start)