We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The code below works fine if acceleration option is omitted.
acceleration
using MLJ # or `MLJBase, MLJModels, MLJEnsembles` for minimal install DecisionTreeClassifier = @iload DecisionTreeClassifier pkg=DecisionTree atom = DecisionTreeClassifier() model = EnsembleModel( atom; bagging_fraction=0.6, rng=123, acceleration=CPUThreads(), out_of_bag_measure = [log_loss, accuracy], ) X, y = @load_iris # a table and a vector julia> mach = machine(model, X, y) |> fit! [ Info: Training machine(ProbabilisticEnsembleModel(model = DecisionTreeClassifier(max_depth = -1, …), …), …). Ensemble-building in parallel on 5 threads. ┌ Error: Problem fitting the machine machine(ProbabilisticEnsembleModel(model = DecisionTreeClassifier(max_depth = -1, …), …), …). └ @ MLJBase ~/MLJ/MLJBase/src/machines.jl:682 [ Info: Running type checks... [ Info: Type checks okay. ERROR: TaskFailedException Stacktrace: [1] wait @ ./task.jl:345 [inlined] [2] threading_run(fun::MLJEnsembles.var"#170#threadsfor_fun#29"{MLJEnsembles.var"#170#threadsfor_fun#28#30"{typeof(MLJEnsembles.get_ensemble_and_indices), Vector{Any}, Int64, Int64, Tuple{Matrix{Float64}, Vector{UInt32}, Vector{Symbol}, CategoricalArrays.CategoricalVector{String, UInt32, String, CategoricalArrays.CategoricalValue{String, UInt32}, Union{}}}, ProgressMeter.Progress, Random.MersenneTwister, Int64, Int64, MLJDecisionTreeInterface.DecisionTreeClassifier, UnitRange{Int64}}}, static::Bool) @ Base.Threads ./threadingconstructs.jl:38 [3] macro expansion @ ./threadingconstructs.jl:89 [inlined] [4] _fit(res::CPUThreads{Nothing}, func::Function, verbosity::Int64, stuff::Tuple{MLJDecisionTreeInterface.DecisionTreeClassifier, Int64, Int64, Int64, Random.MersenneTwister, ProgressMeter.Progress, Tuple{Matrix{Float64}, Vector{UInt32}, Vector{Symbol}, CategoricalArrays.CategoricalVector{String, UInt32, String, CategoricalArrays.CategoricalValue{String, UInt32}, Union{}}}}) @ MLJEnsembles ~/.julia/packages/MLJEnsembles/NtgQL/src/ensembles.jl:414 [5] fit(::MLJEnsembles.ProbabilisticEnsembleModel{MLJDecisionTreeInterface.DecisionTreeClassifier}, ::Int64, ::NamedTuple{(:sepal_length, :sepal_width, :petal_length, :petal_width), NTuple{4, Vector{Float64}}}, ::CategoricalArrays.CategoricalVector{String, UInt32, String, CategoricalArrays.CategoricalValue{String, UInt32}, Union{}}) @ MLJEnsembles ~/.julia/packages/MLJEnsembles/NtgQL/src/ensembles.jl:476 [6] fit_only!(mach::Machine{MLJEnsembles.ProbabilisticEnsembleModel{MLJDecisionTreeInterface.DecisionTreeClassifier}, true}; rows::Nothing, verbosity::Int64, force::Bool, composite:: Nothing) @ MLJBase ~/MLJ/MLJBase/src/machines.jl:680 [7] fit_only! @ ~/MLJ/MLJBase/src/machines.jl:606 [inlined] [8] #fit!#63 @ ~/MLJ/MLJBase/src/machines.jl:778 [inlined] [9] fit! @ ~/MLJ/MLJBase/src/machines.jl:775 [inlined] [10] |>(x::Machine{MLJEnsembles.ProbabilisticEnsembleModel{MLJDecisionTreeInterface.DecisionTreeClassifier}, true}, f::typeof(fit!)) @ Base ./operators.jl:911 [11] top-level scope @ REPL[31]:1 nested task error: AssertionError: length(ints) == 501 Stacktrace: [1] mt_setfull!(r::Random.MersenneTwister, #unused#::Type{UInt64}) @ Random /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/RNGs.jl:226 [2] reserve1 @ /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/RNGs.jl:257 [inlined] [3] mt_pop! @ /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/RNGs.jl:262 [inlined] [4] rand @ /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/RNGs.jl:419 [inlined] [5] rand @ /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/Random.jl:257 [inlined] [6] rand(rng::Random.MersenneTwister, sp::Random.SamplerRangeNDL{UInt64, Int64}) @ Random /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/generation.jl:344 [7] rand @ /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/Random/src/Random.jl:254 [inlined] [8] fisher_yates_sample!(rng::Random.MersenneTwister, a::UnitRange{Int64}, x::Vector{Int64}) @ StatsBase ~/.julia/packages/StatsBase/XgjIN/src/sampling.jl:199 [9] sample!(rng::Random.MersenneTwister, a::UnitRange{Int64}, x::Vector{Int64}; replace::Bool, ordered::Bool) @ StatsBase ~/.julia/packages/StatsBase/XgjIN/src/sampling.jl:484 [10] #sample#207 @ ~/.julia/packages/StatsBase/XgjIN/src/sampling.jl:511 [inlined] [11] #15 @ ./none:0 [inlined] [12] iterate @ ./generator.jl:47 [inlined] [13] collect_to! @ ./array.jl:845 [inlined] [14] collect_to_with_first! @ ./array.jl:823 [inlined] [15] collect(itr::Base.Generator{UnitRange{Int64}, MLJEnsembles.var"#15#17"{Int64, Int64, Random.MersenneTwister}}) @ Base ./array.jl:797 [16] get_ensemble_and_indices @ ~/.julia/packages/MLJEnsembles/NtgQL/src/ensembles.jl:153 [inlined] [17] macro expansion @ ~/.julia/packages/MLJEnsembles/NtgQL/src/ensembles.jl:416 [inlined] [18] (::MLJEnsembles.var"#170#threadsfor_fun#29"{MLJEnsembles.var"#170#threadsfor_fun#28#30"{typeof(MLJEnsembles.get_ensemble_and_indices), Vector{Any}, Int64, Int64, Tuple{Matrix{Float64}, Vector{UInt32}, Vector{Symbol}, CategoricalArrays.CategoricalVector{String, UInt32, String, CategoricalArrays.CategoricalValue{String, UInt32}, Union{}}}, ProgressMeter.Progress, Random.MersenneTwister, Int64, Int64, MLJDecisionTreeInterface.DecisionTreeClassifier, UnitRange{Int64}}})(tid::Int64; onethread::Bool) @ MLJEnsembles ./threadingconstructs.jl:84 [19] #170#threadsfor_fun @ ./threadingconstructs.jl:51 [inlined] [20] (::Base.Threads.var"#1#2"{MLJEnsembles.var"#170#threadsfor_fun#29"{MLJEnsembles.var"#170#threadsfor_fun#28#30"{typeof(MLJEnsembles.get_ensemble_and_indices), Vector{Any}, Int64, Int64, Tuple{Matrix{Float64}, Vector{UInt32}, Vector{Symbol}, CategoricalArrays.CategoricalVector{String, UInt32, String, CategoricalArrays.CategoricalValue{String, UInt32}, Union{}}}, ProgressMeter.Progress, Random.MersenneTwister, Int64, Int64, MLJDecisionTreeInterface.DecisionTreeClassifier, UnitRange{Int64}}}, Int64})() @ Base.Threads ./threadingconstructs.jl:30
The text was updated successfully, but these errors were encountered:
OkonSamuel
Successfully merging a pull request may close this issue.
The code below works fine if
acceleration
option is omitted.The text was updated successfully, but these errors were encountered: