-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathactors.py
182 lines (141 loc) · 6.54 KB
/
actors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from utils import get_network, get_environment, set_all_seeds
from collections import defaultdict
from mcts import MCTS, Node
from logger import Logger
from copy import deepcopy
import numpy as np
import datetime
import pytz
import time
import torch
import ray
import random
import os
@ray.remote
class Actor(Logger):
def __init__(self, actor_key, config, storage, replay_buffer, state=None):
set_all_seeds(config.seed + actor_key if config.seed is not None else None)
self.run_tag = config.run_tag
self.group_tag = config.group_tag
self.actor_key = actor_key
self.config = deepcopy(config)
self.storage = storage
self.replay_buffer = replay_buffer
self.environment = get_environment(config)
self.environment.seed(config.seed)
self.mcts = MCTS(config)
if "actors" in self.config.use_gpu_for:
if torch.cuda.is_available():
if self.config.actors_gpu_device_ids is not None:
device_id = self.config.actors_gpu_device_ids[self.actor_key]
self.device = torch.device("cuda:{}".format(device_id))
else:
self.device = torch.device("cuda")
else:
raise RuntimeError("GPU was requested but torch.cuda.is_available() is False.")
else:
self.device = torch.device("cpu")
self.network = get_network(config, self.device)
self.network.to(self.device)
self.network.eval()
if config.fixed_temperatures:
self.temperature = config.fixed_temperatures[self.actor_key]
self.worker_id = 'actors/temp={}'.format(round(self.temperature, 1))
else:
self.worker_id = 'actor-{}'.format(self.actor_key)
if self.config.norm_obs:
self.obs_min = np.array(self.config.obs_range[::2], dtype=np.float32)
self.obs_max = np.array(self.config.obs_range[1::2], dtype=np.float32)
self.obs_range = self.obs_max - self.obs_min
if self.config.two_players:
self.stats_to_log = defaultdict(int)
self.experiences_collected = 0
self.training_step = 0
self.games_played = 0
self.return_to_log = 0
self.length_to_log = 0
self.value_to_log = {'avg': 0, 'max': 0}
if state is not None:
self.load_state(state)
Logger.__init__(self)
def load_state(self, state):
self.run_tag = os.path.join(self.run_tag, 'resumed', '{}'.format(state['training_step']))
self.network.load_state_dict(state['weights'])
self.training_step = state['training_step']
self.games_played = state['actor_games'][self.actor_key]
def sync_weights(self, force=False):
weights, training_step = ray.get(self.storage.get_weights.remote(self.games_played, self.actor_key))
if training_step != self.training_step or force:
self.network.load_weights(weights)
self.training_step = training_step
def run_selfplay(self):
while not ray.get(self.storage.is_ready.remote()):
time.sleep(1)
self.sync_weights(force=True)
while self.training_step < self.config.training_steps:
game = self.config.new_game(self.environment)
self.play_game(game)
self.value_to_log['avg'] += (game.sum_values/game.history_idx)
self.value_to_log['max'] += game.max_value
self.return_to_log += game.sum_rewards
self.length_to_log += game.step
self.games_played += 1
if self.games_played % self.config.actor_log_frequency == 0:
return_to_log = self.return_to_log / self.config.actor_log_frequency
length_to_log = self.length_to_log / self.config.actor_log_frequency
avg_value_to_log = self.value_to_log['avg'] / self.config.actor_log_frequency
max_value_to_log = self.value_to_log['max'] / self.config.actor_log_frequency
self.log_scalar(tag='games/return', value=return_to_log, i=self.games_played)
self.log_scalar(tag='games/length', value=length_to_log, i=self.games_played)
self.log_scalar(tag='games/avg_value', value=avg_value_to_log, i=self.games_played)
self.log_scalar(tag='games/max_value', value=max_value_to_log, i=self.games_played)
self.value_to_log['avg'] = 0
self.value_to_log['max'] = 0
self.return_to_log = 0
self.length_to_log = 0
if self.config.two_players and self.games_played % 100 == 0:
value_dict = {key:value/100 for key, value in self.stats_to_log.items()}
self.log_scalars(group_tag='games/stats', value_dict=value_dict, i=self.games_played)
self.stats_to_log = defaultdict(int)
self.sync_weights(force=True)
def play_game(self, game):
if not self.config.fixed_temperatures:
self.temperature = self.config.visit_softmax_temperature(self.training_step)
while not game.terminal:
root = Node(0)
current_observation = np.float32(game.get_observation(-1))
if self.config.norm_obs:
current_observation = (current_observation - self.obs_min) / self.obs_range
current_observation = torch.from_numpy(current_observation).to(self.device)
initial_inference = self.network.initial_inference(current_observation.unsqueeze(0))
legal_actions = game.environment.legal_actions()
root.expand(initial_inference, game.to_play, legal_actions)
root.add_exploration_noise(self.config.root_dirichlet_alpha, self.config.root_exploration_fraction)
self.mcts.run(root, self.network)
error = root.value() - initial_inference.value.item()
game.history.errors.append(error)
action = self.config.select_action(root, self.temperature)
game.apply(action)
game.store_search_statistics(root)
self.experiences_collected += 1
if self.experiences_collected % self.config.weight_sync_frequency == 0:
self.sync_weights()
save_history = (game.history_idx - game.previous_collect_to) == self.config.max_history_length
if save_history or game.done or game.terminal:
overlap = self.config.num_unroll_steps + self.config.td_steps
if not game.history.dones[game.previous_collect_to - 1]:
collect_from = max(0, game.previous_collect_to - overlap)
else:
collect_from = game.previous_collect_to
history = game.get_history_sequence(collect_from)
ignore = overlap if not game.done else None
self.replay_buffer.save_history.remote(history, ignore=ignore, terminal=game.terminal)
if game.step >= self.config.max_steps:
self.environment.was_real_done = True
break
if self.config.two_players:
self.stats_to_log[game.info["result"]] += 1
def launch(self):
print("{} is online on {}.".format(self.worker_id.capitalize(), self.device))
with torch.inference_mode():
self.run_selfplay()