-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathxgboost_demo.py
292 lines (254 loc) · 12.3 KB
/
xgboost_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/python
# -*- coding: utf-8 -*-
# @Time : 2018/4/28 下午7:24
# @Author : ComeOnJian
# @File : xgboost.py
import pandas as pd
import numpy as np
import re
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelBinarizer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
import matplotlib.pylab as plt
train_file = '../data/Titanic/train.csv'
test_file = '../data/Titanic/test.csv'
test_result_file = '../data/Titanic/gender_submission.csv'
def data_feature_engineering(full_data,age_default_avg=True,one_hot=True):
"""
:param full_data:全部数据集包括train,test
:param age_default_avg:age默认填充方式,是否使用平均值进行填充
:param one_hot: Embarked字符处理是否是one_hot编码还是映射处理
:return: 处理好的数据集
"""
for dataset in full_data:
# Pclass、Parch、SibSp不需要处理
# sex 0,1
dataset['Sex'] = dataset['Sex'].map(Passenger_sex).astype(int)
# FamilySize
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
# IsAlone
dataset['IsAlone'] = 0
isAlone_mask = dataset['FamilySize'] == 1
dataset.loc[isAlone_mask, 'IsAlone'] = 1
# Fare 离散化处理,6个阶段
fare_median = dataset['Fare'].median()
dataset['CategoricalFare'] = dataset['Fare'].fillna(fare_median)
dataset['CategoricalFare'] = pd.qcut(dataset['CategoricalFare'],6,labels=[0,1,2,3,4,5])
# Embarked映射处理,one-hot编码,极少部分缺失值处理
dataset['Embarked'] = dataset['Embarked'].fillna('S')
dataset['Embarked'] = dataset['Embarked'].astype(str)
if one_hot:
# 因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码
Embarked_arr = LabelBinarizer().fit_transform(dataset['Embarked'])
dataset['Embarked_0'] = Embarked_arr[:, 0]
dataset['Embarked_1'] = Embarked_arr[:, 1]
dataset['Embarked_2'] = Embarked_arr[:, 2]
dataset.drop('Embarked',axis=1,inplace=True)
else:
# 字符串映射处理
dataset['Embarked'] = dataset['Embarked'].map(Passenger_Embarked).astype(int)
# Name选取称呼Title_name
dataset['TitleName'] = dataset['Name'].apply(get_title_name)
dataset['TitleName'] = dataset['TitleName'].replace('Mme', 'Mrs')
dataset['TitleName'] = dataset['TitleName'].replace('Mlle', 'Miss')
dataset['TitleName'] = dataset['TitleName'].replace('Ms', 'Miss')
dataset['TitleName'] = dataset['TitleName'].replace(['Lady', 'Countess', 'Capt', 'Col', \
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'],
'Other')
dataset['TitleName'] = dataset['TitleName'].map(Passenger_TitleName).astype(int)
# age —— 缺失值,分段处理
if age_default_avg:
# 缺失值使用avg处理
age_avg = dataset['Age'].mean()
age_std = dataset['Age'].std()
age_null_count = dataset['Age'].isnull().sum()
age_default_list = np.random.randint(low=age_avg - age_std, high=age_avg + age_std, size=age_null_count)
dataset.loc[np.isnan(dataset['Age']), 'Age'] = age_default_list
dataset['Age'] = dataset['Age'].astype(int)
else:
# 将age作为label,预测缺失的age
# 特征为 TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked
feature_list = ['TitleName', 'Sex', 'Pclass', 'SibSp', 'Parch', 'IsAlone','CategoricalFare',
'FamilySize', 'Embarked','Age']
if one_hot:
feature_list.append('Embarked_0')
feature_list.append('Embarked_1')
feature_list.append('Embarked_2')
feature_list.remove('Embarked')
Age_data = dataset.loc[:,feature_list]
un_Age_mask = np.isnan(Age_data['Age'])
Age_train = Age_data[~un_Age_mask] #要训练的Age
# print(Age_train.shape)
feature_list.remove('Age')
rf0 = RandomForestRegressor(n_estimators=60,oob_score=True,min_samples_split=10,min_samples_leaf=2,
max_depth=7,random_state=10)
rf0.fit(Age_train[feature_list],Age_train['Age'])
def set_default_age(age):
if np.isnan(age['Age']):
# print(age['PassengerId'])
# print age.loc[feature_list]
data_x = np.array(age.loc[feature_list]).reshape(1,-1)
# print data_x
age_v = round(rf0.predict(data_x))
# print('pred:',age_v)
# age['Age'] = age_v
return age_v
# print age
return age['Age']
dataset['Age'] = dataset.apply(set_default_age, axis=1)
# print(dataset.tail())
#
# data_age_no_full = dataset[dataset['Age'].]
# pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分,
# 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同
# print(dataset.tail())
dataset['CategoricalAge'] = pd.cut(dataset['Age'], 5,labels=[0,1,2,3,4])
return full_data
def data_feature_select(full_data):
"""
:param full_data:全部数据集
:return:
"""
for data_set in full_data:
drop_list = ['PassengerId','Name','Age','Fare','Ticket','Cabin']
data_set.drop(drop_list,axis=1,inplace=True)
train_y = np.array(full_data[0]['Survived'])
train = full_data[0].drop('Survived',axis=1,inplace=False)
# print(train.head())
train_X = np.array(train)
test_X = np.array(full_data[1])
return train_X,train_y,test_X
def Passenger_sex(x):
sex = {'female': 0, 'male': 1}
return sex[x]
def Passenger_Embarked(x):
Embarked = {'S': 0, 'C': 1 , 'Q': 2}
return Embarked[x]
def Passenger_TitleName(x):
TitleName = {'Mr': 0, 'Miss': 1, 'Mrs': 2,'Master': 3, 'Other': 4}
return TitleName[x]
def get_title_name(name):
title_s = re.search(' ([A-Za-z]+)\.', name)
if title_s:
return title_s.group(1)
return ""
def modelfit(alg,dtrain_x,dtrain_y,useTrainCV=True,cv_flods=5,early_stopping_rounds=50):
"""
:param alg: 初始模型
:param dtrain_x:训练数据X
:param dtrain_y:训练数据y(label)
:param useTrainCV: 是否使用cv函数来确定最佳n_estimators
:param cv_flods:交叉验证的cv数
:param early_stopping_rounds:在该数迭代次数之前,eval_metric都没有提升的话则停止
"""
if useTrainCV:
xgb_param = alg.get_xgb_params()
xgtrain = xgb.DMatrix(dtrain_x,dtrain_y)
cv_result = xgb.cv(xgb_param,xgtrain,num_boost_round = alg.get_params()['n_estimators'],
nfold = cv_flods,metrics = 'auc',early_stopping_rounds=early_stopping_rounds)
# print(cv_result)
alg.set_params(n_estimators=cv_result.shape[0])
# train data
alg.fit(train_X,train_y,eval_metric='auc')
#predict train data
train_y_pre = alg.predict(train_X)
print ("\nModel Report")
print ("Accuracy : %.4g" % metrics.accuracy_score(train_y, train_y_pre))
feat_imp = pd.Series(alg.get_booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind = 'bar',title='Feature Importance')
plt.ylabel('Feature Importance Score')
plt.show()
return alg
def xgboost_change_param(train_X,train_y):
# Xgboost 调参
# step1 确定学习速率和迭代次数n_estimators,即集分类器的数量
xgb1 = XGBClassifier(learning_rate=0.1,
booster='gbtree',
n_estimators=300,
max_depth=4,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective='binary:logistic',
nthread=2,
scale_pos_weight=1,
seed=10
)
#最佳 n_estimators = 59 ,learning_rate=0.1
modelfit(xgb1,train_X,train_y,early_stopping_rounds=45)
# setp2 调试的参数是min_child_weight以及max_depth
param_test1 = {
'max_depth': range(3,8,1),
'min_child_weight':range(1,6,2)
}
gsearch1 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=4,min_child_weight=1,gamma=0,
subsample=0.8,colsample_bytree=0.8,
objective='binary:logistic',nthread=2,
scale_pos_weight=1,seed=10
),
param_grid=param_test1,
scoring='roc_auc',n_jobs=1,cv=5)
gsearch1.fit(train_X,train_y)
print gsearch1.best_params_,gsearch1.best_score_
# 最佳 max_depth = 7 ,min_child_weight=3
# modelfit(gsearch1.best_estimator_) 最佳模型为:gsearch1.best_estimator_
# step3 gamma参数调优
param_test2 = {
'gamma': [i/10.0 for i in range(0,5)]
}
gsearch2 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=7,min_child_weight=3,gamma=0,
subsample=0.8,colsample_bytree=0.8,
objective='binary:logistic',nthread=2,
scale_pos_weight=1,seed=10),
param_grid=param_test2,
scoring='roc_auc',
cv=5
)
gsearch2.fit(train_X, train_y)
print gsearch2.best_params_, gsearch2.best_score_
# 最佳 gamma=0.3
# modelfit(gsearch2.best_estimator_)
#step4 调整subsample 和 colsample_bytree 参数
param_test3 = {
'subsample': [i / 10.0 for i in range(6, 10)],
'colsample_bytree': [i / 10.0 for i in range(6, 10)]
}
gsearch3 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=7,min_child_weight=3,gamma=0.3,
subsample=0.8,colsample_bytree=0.8,
objective='binary:logistic',nthread=2,
scale_pos_weight=1,seed=10),
param_grid=param_test3,
scoring='roc_auc',
cv=5
)
gsearch3.fit(train_X, train_y)
print gsearch3.best_params_, gsearch3.best_score_
# 最佳'subsample': 0.8, 'colsample_bytree': 0.6
# step5 正则化参数调优
if __name__ == '__main__':
train = pd.read_csv(train_file)
test = pd.read_csv(test_file)
test_y = pd.read_csv(test_result_file)
full_data = [train,test]
# train.apply(axis=0)
full_data = data_feature_engineering(full_data,age_default_avg=True,one_hot=False)
train_X, train_y, test_X = data_feature_select(full_data)
# XGBoost调参
# xgboost_change_param(train_X,train_y)
xgb1 = XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=7,min_child_weight=3,
gamma=0.3,subsample=0.8,
colsample_bytree=0.6,objective='binary:logistic',
nthread=2,scale_pos_weight=1,seed=10)
xgb1.fit(train_X,train_y)
y_test_pre = xgb1.predict(test_X)
y_test_true = np.array(test_y['Survived'])
print ("the xgboost model Accuracy : %.4g" % metrics.accuracy_score(y_pred=y_test_pre, y_true=y_test_true))