-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_explainability_ims.py
218 lines (177 loc) · 9.26 KB
/
generate_explainability_ims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import timm
import os
import sys
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np
import tqdm
import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import *
from torchvision import models
from captum.attr import IntegratedGradients
from captum.attr import Saliency
from captum.attr import DeepLift
from captum.attr import NoiseTunnel
from captum.attr import visualization as viz
def setup_dataloader():
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
transforms.Resize(224)
#transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=40,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=40,
shuffle=False, num_workers=2)
return trainloader, testloader
def setup_resnet(model_type_folder, device):
model_resnet50 = timm.create_model('resnet50', pretrained=True)
model_resnet50.fc.weight = nn.Parameter(torch.rand(10, 2048))
model_resnet50.fc.bias = nn.Parameter(torch.rand(10))
path = "/gpfs/data/tserre/jgopal/trained-models/{}/model_best.pth.tar".format(model_type_folder) # <------- CHANGE THIS
checkpoint = torch.load(path)
model_resnet50.load_state_dict(checkpoint['state_dict'])
model_resnet50.to(device).eval()
return model_resnet50
def setup_vgg(model_type_folder, device):
model_vgg19 = timm.create_model('vgg19', pretrained=True)
model_vgg19.head.fc.weight = nn.Parameter(torch.rand(10, 4096))
model_vgg19.head.fc.bias = nn.Parameter(torch.rand(10))
path = "/gpfs/data/tserre/jgopal/trained-models/{}/model_best.pth.tar".format(model_type_folder)
checkpoint = torch.load(path, map_location=torch.device('cpu'))
model_vgg19.load_state_dict(checkpoint['state_dict'])
model_vgg19.to(device).eval()
return model_vgg19
def test(model, dataloader, device):
"""
Computes the average accuracy of the given model on the test set.
:param model: A PyTorch model
:param dataloader: A dataloader that contains the testing dataset
in the format (image, target).
:param device: Device on which to evaluate the model, often
torch.device('cuda:insert_num') or torch.device('cpu')
:return: average accuracy
"""
epoch_correct_sum = 0
model.eval()
with tqdm.tqdm(dataloader, unit="batch") as tepoch:
for X, Y in tepoch:
tepoch.set_description(f"Test progress")
X, Y = X.to(device), Y.to(device)
output = model(X)
prev_sum = epoch_correct_sum
epoch_correct_sum = prev_sum + correct_predict_num(output, Y)
avg_accuracy = epoch_correct_sum / len(dataloader.dataset)
return avg_accuracy
def correct_predict_num(logit, target):
"""
Returns the number of correct predictions.
:param logit: 2D torch tensor of shape [n, class_num], where
n is the number of samples, and class_num is the number of classes (10 for MNIST).
Represents the output of the model.
:param target: 1D torch tensor of shape [n], where n is the number of samples.
Represents the ground truth categories of images.
:return: A python scalar. The number of correct predictions.
"""
predictions = torch.argmax(logit, dim = 1)
predictions = torch.where(predictions == target, 1, 0)
return torch.sum(predictions).item()
def attribute_image_features(model, algorithm, input, labels, ind=0, **kwargs):
model.zero_grad()
tensor_attributions = algorithm.attribute(input,
target=labels[ind],
**kwargs
)
return tensor_attributions
def make_feature_maps(model, classes, images, labels, model_name):
#class_indices = [0, 1, 2, 3, 4, 6, 10, 11, 12, 13, 25, 36]
class_indices = [0, 1, 3, 4, 6, 11, 12, 13, 25, 36]
store_ims = images
store_labels = labels
for ind in class_indices:
images = store_ims[ind]
im_one = images.cuda()
images = images[None, :].cuda()
labels = store_labels[ind].cuda()
outputs = model(images)
_, predicted = torch.max(outputs, 1)
print('Correct Class:', classes[labels])
print('Predicted:', classes[predicted],
' Probability:', torch.max(F.softmax(outputs, 1)).item())
#input = images.unsqueeze(0)
input = images
input.requires_grad = True
original_image = np.transpose((im_one.cpu().detach().numpy() / 2) + 0.5, (1, 2, 0))
## SALIENCY MAPS ##
saliency = Saliency(model)
grads = saliency.attribute(input, target=labels.item())
grads = np.transpose(grads.squeeze().cpu().detach().numpy(), (1, 2, 0))
## INTEGRATED GRADIENTS ##
ig = IntegratedGradients(model)
attr_ig, delta = attribute_image_features(model, ig, input, labels.unsqueeze(0), baselines=input * 0, return_convergence_delta=True)
attr_ig = np.transpose(attr_ig.squeeze().cpu().detach().numpy(), (1, 2, 0))
print('Approximation delta: ', abs(delta))
# ig = IntegratedGradients(model)
# nt = NoiseTunnel(ig)
# attr_ig_nt = attribute_image_features(model, nt, input, labels.unsqueeze(0), baselines=input * 0, nt_type='smoothgrad_sq',
# nt_samples=100, stdevs=0.2)
# attr_ig_nt = np.transpose(attr_ig_nt.squeeze(0).cpu().detach().numpy(), (1, 2, 0))
## DEEPLIFT ##
# dl = DeepLift(model)
# attr_dl = attribute_image_features(model, dl, input, labels.unsqueeze(0), baselines=input * 0)
# attr_dl = np.transpose(attr_dl.squeeze(0).cpu().detach().numpy(), (1, 2, 0))
## VISUALIZATION & SAVING ##
# _ = viz.visualize_image_attr(None, original_image, method="original_image", title="Original Image", cmap='viridis', use_pyplot=False)
_ = viz.visualize_image_attr(grads, original_image, method="blended_heat_map", sign="absolute_value",
show_colorbar=True, title="Overlayed Gradient Magnitudes", cmap='viridis', use_pyplot=False)
canvas = FigureCanvas(_[0])
_[0].savefig("/gpfs/data/tserre/jgopal/explainability/{}/{}_gradient.png".format(model_name, classes[labels]), dpi=100)
_ = viz.visualize_image_attr(attr_ig, original_image, method="blended_heat_map",sign="absolute_value",
show_colorbar=True, title="Overlayed Integrated Gradients", cmap='viridis', use_pyplot=False)
canvas = FigureCanvas(_[0])
_[0].savefig("/gpfs/data/tserre/jgopal/explainability/{}/{}_integrated.png".format(model_name, classes[labels]), dpi=100)
# _ = viz.visualize_image_attr(attr_ig_nt, original_image, method="blended_heat_map", sign="absolute_value",
# outlier_perc=10, show_colorbar=True,
# title="Overlayed Integrated Gradients \n with SmoothGrad Squared", cmap='viridis', use_pyplot=False)
# canvas = FigureCanvas(_[0])
# _[0].savefig("/gpfs/data/tserre/jgopal/explainability/{}/{}_smoothGrad.png".format(model_name, classes[labels]), dpi=100)
# _ = viz.visualize_image_attr(attr_dl, original_image, method="blended_heat_map",sign="absolute_value",show_colorbar=True,
# title="Overlayed DeepLift", cmap='viridis', use_pyplot=False)
# canvas = FigureCanvas(_[0])
# _[0].savefig("/gpfs/data/tserre/jgopal/explainability/{}/{}_deeplift.png".format(model_name, classes[labels]), dpi=100)
def main():
model_types = {"RESNET" : setup_resnet, "VGG" : setup_vgg}
if len(sys.argv) != 3 or sys.argv[1] not in model_types.keys():
print("USAGE: python main.py <Model Type> <Model Type Folder>")
print("<Model Type>: [RESNET/VGG]")
print("<Model Type Folder>: [resnet-control/resnet-l2/...]")
exit()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model_types[sys.argv[1]](sys.argv[2], device)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
trainloader, testloader = setup_dataloader()
dataiter = iter(testloader)
images, labels = dataiter.next()
#images = images.cuda()
#labels = labels.cuda()
#outputs = model(images)
#_, predicted = torch.max(outputs, 1)
#model_acc = test(model, testloader, device)
#print(model_acc)
make_feature_maps(model, classes, images, labels, sys.argv[2])
if __name__ == "__main__":
main()