-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver_scratchpad.py
266 lines (219 loc) · 12.1 KB
/
driver_scratchpad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import yaml
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from data_utils import *
from model import *
from test import *
from train import *
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_config', default='config_tmp.yml',
help='data config file path')
parser.add_argument('--model_config', default='model_baseline.yml',
help='model config file path')
parser.add_argument('--pretrained_path', default=None,
help='pretrained model path')
parser.add_argument('--save_path', default='checkpoints/temp.pth',
help='pretrained model path')
parser.add_argument('--training_strategy', default='lora', help='how to train the model')
parser.add_argument('--device', default='cuda:0', help='device to train on')
args = parser.parse_args()
return args
def main_onetime_functions(config):
dataset_dict, dataset_sizes, label_dict = get_data(config, tr_folder_start=0, tr_folder_end=78000, val_folder_start=0, val_folder_end=104000, use_norm=False)
for x in dataset_dict:
dataset_dict[x].one_time_generate_pos_neg_list_dicts(x)
def main_datautils(config, use_norm=True):
selected_idxs = [0,12,42,79,100]
print(config)
dataset_dict, dataset_sizes, label_dict = get_data(config, tr_folder_start=0, tr_folder_end=78000, val_folder_start=0, val_folder_end=104000, use_norm=use_norm)
#test without generating examples for legacy
# print(len(dataset_dict['train']))
# for i in selected_idxs:
# temp = (dataset_dict['train'][i])
# print(temp[-1])
# print(temp[-2])
# print(temp[0].shape)
# print(temp[1].shape)
# plt.imshow(temp[0].permute(1,2,0), cmap='gray')
# plt.show()
# plt.imshow(temp[1], cmap='gray')
# plt.show()
#test generate examples function
print("testing generate examples\n")
try:
dataset_dict['train'].generate_examples()
except:
pass
print(len(dataset_dict['train']))
for i in selected_idxs:
temp = (dataset_dict['train'][i])
print(temp[-1])
print(temp[-2])
print(temp[0].shape)
print(temp[1].shape)
try:
plt.imshow(temp[1], cmap='gray')
plt.show()
print(temp[0].min(), temp[0].max())
plt.imshow(temp[0].permute(1,2,0), cmap='gray')
plt.show()
except:
print("temp range: ",temp[0][0].min(),temp[0][0].max())
plt.imshow(temp[0][0].permute(1,2,0), cmap='gray')
plt.show()
print("temp label range: ",temp[1][0].min(),temp[1][0].max())
plt.imshow(temp[1][0], cmap='gray')
plt.show()
def main_model(config):
print(config)
training_strategy = 'lora'
label_dict = {
'liver':0,
'tumor':1
}
model = Prompt_Adapted_SAM(config, label_dict)
#freeze correct weights
for p in model.parameters():
p.requires_grad=True
#unfreeze according to strategy:
for name, p in model.named_parameters():
# elif training_strategy=='biastuning':
# if ('bias' in name.lower()) and ('clip' not in name.lower()):
# p.requires_grad = True
# if ('bias' in name.lower()) and ('clip' not in name.lower()):
# p.requires_grad = True
if model_config['prompts']['USE_TEXT_PROMPT']:
if 'Text_Embedding_Affine' in name:
p.requires_grad = True
if 'clip' in name:
p.requires_grad = False
# for name, p in model.named_parameters():
# if p.requires_grad:
# print(name)
print('number of trainable parameters: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
return
def main_train(data_config, model_config, pretrained_path, save_path, training_strategy='lora', device='cuda:0'):
print(data_config)
print(model_config)
#load data
if data_config['data']['name']=='ENDOVIS':
dataset_dict, dataset_sizes, label_dict = get_data(data_config, tr_folder_start=0, tr_folder_end=180, val_folder_start=180, val_folder_end=304)
dataloader_dict = {}
for x in ['train','val']:
dataloader_dict[x] = torch.utils.data.DataLoader(dataset_dict[x], batch_size=model_config['training']['batch_size'], shuffle=True, num_workers=4)
elif data_config['data']['name']=='ENDOVIS 18':
dataset_dict, dataset_sizes, label_dict = get_data(data_config, tr_folder_start=0, tr_folder_end=18000, val_folder_start=0, val_folder_end=34444)
dataloader_dict = {}
for x in ['train','val']:
dataloader_dict[x] = torch.utils.data.DataLoader(dataset_dict[x], batch_size=model_config['training']['batch_size'], shuffle=True, num_workers=4)
elif data_config['data']['name']=='CHESTXDET':
dataset_dict, dataset_sizes, label_dict = get_data(data_config, tr_folder_start=0, tr_folder_end=18000, val_folder_start=0, val_folder_end=34444)
dataloader_dict = {}
for x in ['train','val']:
dataloader_dict[x] = torch.utils.data.DataLoader(dataset_dict[x], batch_size=model_config['training']['batch_size'], shuffle=True, num_workers=4)
elif data_config['data']['name']=='CHOLEC 8K':
dataset_dict, dataset_sizes, label_dict = get_data(data_config, tr_folder_start=0, tr_folder_end=18000, val_folder_start=0, val_folder_end=34444)
dataloader_dict = {}
for x in ['train','val']:
dataloader_dict[x] = torch.utils.data.DataLoader(dataset_dict[x], batch_size=model_config['training']['batch_size'], shuffle=True, num_workers=4)
elif data_config['data']['name']=='ULTRASOUND':
dataset_dict, dataset_sizes, label_dict = get_data(data_config, tr_folder_start=0, tr_folder_end=18000, val_folder_start=0, val_folder_end=34444)
dataloader_dict = {}
for x in ['train','val']:
dataloader_dict[x] = torch.utils.data.DataLoader(dataset_dict[x], batch_size=model_config['training']['batch_size'], shuffle=True, num_workers=4)
#load model
#change the img size in model config according to data config
model_config['sam']['img_size'] = data_config['data_transforms']['img_size']
model_config['sam']['num_classes'] = len(data_config['data']['label_list'])
if training_strategy=='lora':
model_config['use_lora'] = True
else:
model_config['use_lora'] = False
if training_strategy=='biastuning':
model_config['decoder_training'] = 'full'
if model_config['arch']=='Prompt Adapted SAM':
model = Prompt_Adapted_SAM(model_config, label_dict, device, training_strategy=training_strategy)
#load model weights
if pretrained_path is not None:
model.load_state_dict(torch.load(pretrained_path))
#freeze correct weights
for p in model.parameters():
# p.requires_grad=True
p.requires_grad=False
#unfreeze according to strategy:
for name, p in model.named_parameters():
if training_strategy=='biastuning':
if ('bias' in name.lower()) and ('clip' not in name.lower()):
p.requires_grad = True
elif training_strategy=='lora':
if 'trainable_lora' in name.lower():
p.requires_grad = True
if model_config['prompts']['USE_TEXT_PROMPT']:
if 'Text_Embedding_Affine' in name:
p.requires_grad = True
if model_config['decoder_training']=='full':
if ('decoder' in name.lower()) and ('clip' not in name.lower()):
p.requires_grad = True
elif model_config['decoder_training']=='none':
if 'decoder' in name.lower():
p.requires_grad = False
if 'prompt_encoder' in name.lower():
p.requires_grad = False
# p.requires_grad = True
#common parameters
if 'norm' in name.lower():
p.requires_grad = True
if 'pos_embed' in name.lower():
p.requires_grad = True
if 'clip' in name.lower():
p.requires_grad = False
#training parameters
print('number of trainable parameters: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
training_params = model_config['training']
if training_params['optimizer'] == 'adamw':
optimizer = optim.AdamW(model.parameters(), lr=float(training_params['lr']), weight_decay=float(training_params['weight_decay']))
elif training_params['optimizer'] == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=float(training_params['lr']), weight_decay=float(training_params['weight_decay']), momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=training_params['schedule_step'], gamma=training_params['schedule_step_factor'])
criterion = []
if 'dice' in training_params['loss']:
criterion.append(dice_loss)
if 'focal' in training_params['loss']:
criterion.append(focal_loss)
if 'CE' in training_params['loss']:
criterion.append(nn.BCELoss())
if 'weighted CE' in training_params['loss']:
criterion.append(weighted_ce_loss)
if criterion==[]:
criterion = [nn.BCELoss()]
# retain_graph = False if model_config['decoder_training']=='none' else True
retain_graph=False
#train the model
if data_config['data']['name']=='ENDOVIS':
model = train_dl(model, dataset_dict, dataset_sizes, criterion, optimizer, exp_lr_scheduler, save_path, num_epochs=training_params['num_epochs'], bs=training_params['batch_size'], device=device, retain_graph=retain_graph, neg2pos_ratio=data_config['data']['negative_to_positive_ratio'], reg_multiplier=model_config['training']['reg_multiplier'])
elif data_config['data']['name']=='ENDOVIS 18':
model = train_dl(model, dataset_dict, dataset_sizes, criterion, optimizer, exp_lr_scheduler, save_path, num_epochs=training_params['num_epochs'], bs=training_params['batch_size'], device=device, retain_graph=retain_graph, neg2pos_ratio=data_config['data']['negative_to_positive_ratio'], reg_multiplier=model_config['training']['reg_multiplier'])
elif data_config['data']['name']=='CHOLEC 8K':
model = train_dl(model, dataset_dict, dataset_sizes, criterion, optimizer, exp_lr_scheduler, save_path, num_epochs=training_params['num_epochs'], bs=training_params['batch_size'], device=device, retain_graph=retain_graph, neg2pos_ratio=data_config['data']['negative_to_positive_ratio'], reg_multiplier=model_config['training']['reg_multiplier'])
elif data_config['data']['name']=='ULTRASOUND':
model = train_dl(model, dataset_dict, dataset_sizes, criterion, optimizer, exp_lr_scheduler, save_path, num_epochs=training_params['num_epochs'], bs=training_params['batch_size'], device=device, retain_graph=retain_graph, neg2pos_ratio=data_config['data']['negative_to_positive_ratio'], reg_multiplier=model_config['training']['reg_multiplier'])
elif data_config['data']['name']=='CHESTXDET':
model = train_dl(model, dataset_dict, dataset_sizes, criterion, optimizer, exp_lr_scheduler, save_path, num_epochs=training_params['num_epochs'], bs=training_params['batch_size'], device=device, retain_graph=retain_graph, neg2pos_ratio=data_config['data']['negative_to_positive_ratio'], reg_multiplier=model_config['training']['reg_multiplier'])
if __name__ == '__main__':
args = parse_args()
with open(args.data_config, 'r') as f:
data_config = yaml.load(f, Loader=yaml.FullLoader)
with open(args.model_config, 'r') as f:
model_config = yaml.load(f, Loader=yaml.FullLoader)
# main_onetime_functions(data_config)
# #for checking data_utils
# main_datautils(data_config, use_norm=False)
# #for checking model
# main_model(config=model_config)
# #for testing on the test dataset
# main_test(data_config, model_config, args.pretrained_path)
# # for training the model
main_train(data_config, model_config, args.pretrained_path, args.save_path, args.training_strategy, device=args.device)