-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
365 lines (320 loc) · 14.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
os.environ['HF_DATASETS_CACHE']="/mnt/store/jparanj1/.cache/"
os.environ['TRANSFORMERS_CACHE']='/mnt/store/jparanj1/.cache/'
os.environ['HF_HOME']="/mnt/store/jparanj1/.cache/"
os.environ['HF_HUB_CACHE']='/mnt/store/jparanj1/.cache/'
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
import cv2
from matplotlib import pyplot as plt
import torchvision.transforms.functional as tf
from copy import deepcopy
import torch
import torchvision
import sys
sys.path.append('Grounded-Segment-Anything')
sys.path.append("Grounded-Segment-Anything/GroundingDINO")
sys.path.append("Grounded-Segment-Anything/recognize-anything")
from transformers import CLIPTextModel, CLIPTokenizer
from positional_encodings.torch_encodings import PositionalEncodingPermute2D, Summer
#gsam requirements
# Grounding DINO
from GroundingDINO.groundingdino.datasets import transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import (
build_sam,
build_sam_hq,
SamPredictor
)
# Recognize Anything Model & Tag2Text
from ram.models import ram
from ram import inference_ram
import torchvision.transforms as TS
def tokenize_captions(tokenizer, captions):
inputs = tokenizer(
captions,
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
return inputs.input_ids
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
class TransformDataset(Dataset):
def __init__(self, dataset, transform):
self.dataset = dataset
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
item = self.dataset[idx]
return self.transform(item)
class ThermalDataset(Dataset):
def __init__(self, data_root,
config_file='Grounded-Segment-Anything/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py',
grounded_checkpoint='Grounded-Segment-Anything/groundingdino_swint_ogc.pth',
ram_checkpoint='Grounded-Segment-Anything/ram_swin_large_14m.pth',
sam_checkpoint='Grounded-Segment-Anything/sam_vit_b_01ec64.pth',
return_boxes=False,
return_masks=True,
return_text=True,
device='cuda'):
self.data_root = data_root
self.natural_im_list = sorted(os.listdir(os.path.join(data_root,"Vis")))
self.thermal_im_list = sorted(os.listdir(os.path.join(data_root, "Ir")))
self.natural_im_list = self.natural_im_list[:len(self.thermal_im_list)]
self.p_enc_2d = PositionalEncodingPermute2D(256).to(device)
with open('data_preparation/thermal_instructions.txt', 'r') as f:
self.thermal_instructions = f.readlines()
print("sample instructions: ", self.thermal_instructions[:5])
print("Natural im list: ", len(self.natural_im_list))
print("Thermal im list: ",len(self.thermal_im_list))
self.column_names = ['visible_image', 'edit_instruction' ,'thermal_image', 'text_embed', 'box_embed', 'mask_embed']
self.model = load_model(config_file, grounded_checkpoint, device=device)
self.device = device
# load model
self.ram_model = ram(pretrained=ram_checkpoint,
image_size=384,
vit='swin_l')
# threshold for tagging
# we reduce the threshold to obtain more tags
self.ram_model.eval()
self.ram_model = self.ram_model.to(device)
self.box_threshold = 0.25
self.text_threshold = 0.2
self.iou_threshold = 0.5
self.return_text = True if return_text.lower()=='true' else False
self.return_boxes = True if return_boxes.lower()=='true' else False
self.return_masks = True if return_masks.lower()=='true' else False
self.predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
self.tokenizer = CLIPTokenizer.from_pretrained(
'openai/clip-vit-large-patch14',
# subfolder="tokenizer",
)
self.text_encoder = CLIPTextModel.from_pretrained(
'openai/clip-vit-large-patch14',
# subfolder="text_encoder",
).to(self.device)
def __len__(self):
return len(self.natural_im_list)
def __getitem__(self, i):
# print(self.natural_im_list[i])
natural_im = PIL.Image.open(os.path.join(self.data_root, 'Vis', self.natural_im_list[i]))
thermal_im = PIL.Image.open(os.path.join(self.data_root, 'Ir', self.thermal_im_list[i]))
text_ins = random.choice(self.thermal_instructions)
#choose which wave to generate
wave = 'long'
if 'kaist' in self.data_root.lower():
wave = 'long'
elif 'flir' in self.data_root.lower():
wave = 'long'
elif 'osu' in self.data_root.lower():
wave = 'mid'
elif 'litiv' in self.data_root.lower():
wave = 'mid'
elif 'nirscene' in self.data_root.lower():
wave = 'near'
if text_ins[-1]!='.':
text_ins = text_ins+'. '
text_ins = text_ins + f'Make it {wave} wave Infrared.'
#get GSAM outputs
# print(f"return text: {self.return_text}, return boxes: {self.return_boxes}, return masks: {self.return_masks}")
with torch.no_grad():
image_path = os.path.join(self.data_root, 'Vis', self.natural_im_list[i])
image_pil, image = load_image(image_path)
# image_pil.save("tmp.png")
# initialize Recognize Anything Model
normalize = TS.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = TS.Compose([
TS.Resize((384, 384)),
TS.ToTensor(), normalize
])
raw_image = image_pil.resize(
(384, 384))
raw_image = transform(raw_image).unsqueeze(0).to(self.device)
res = inference_ram(raw_image , self.ram_model)
tags=res[0].replace(' |', ',')
# print("predicted tags: ", tags)
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
self.model, image, tags, self.box_threshold, self.text_threshold, device=self.device
)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# use NMS to handle overlapped boxes
# print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores, self.iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
# print(f"After NMS: {boxes_filt.shape[0]} boxes and total shape: {boxes_filt.shape}")
# print("pred_phrases: ", pred_phrases)
selected_tags = [p[:p.find('(')] for p in pred_phrases]
# print("selected tags: ", selected_tags)
if self.return_text:
text_embeddings = self.text_encoder(tokenize_captions(self.tokenizer, selected_tags).to(self.device))[1]
# print("text embeddings shape: ", text_embeddings.shape)
else:
tmp = self.text_encoder(tokenize_captions(self.tokenizer, selected_tags).to(self.device))[1]
text_embeddings = torch.zeros_like(tmp).to(self.device)
transformed_boxes = self.predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device)
if self.return_boxes:
box_embeddings, _ = self.predictor.model.prompt_encoder(
points = None,
boxes = transformed_boxes,
masks = None
)
box_embeddings = box_embeddings.to(self.device)
# box_embeddings = box_embeddings.to(self.device).reshape((boxes_filt.shape[0],-1))
# print("box embeddings shape: ", box_embeddings.shape)
else:
if self.return_masks:
box_embeddings = None
else:
tmp, _ = self.predictor.model.prompt_encoder(
points = None,
boxes = transformed_boxes,
masks = None
)
box_embeddings = torch.zeros_like(tmp).to(self.device)
masks, _, _ = self.predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(self.device),
multimask_output = False,
)
if self.return_masks:
# masks, _, _ = self.predictor.predict_torch(
# point_coords = None,
# point_labels = None,
# boxes = transformed_boxes.to(self.device),
# multimask_output = False,
# )
# print("Mask shape: ", masks.shape)
# print("image shape: ", image.shape)
_, mask_embeddings = self.predictor.model.prompt_encoder(
points = None,
boxes = None,
masks = masks.float()
)
# print("mask embeddings shape: ", mask_embeddings.shape)
mask_embeddings_with_pos_embed = mask_embeddings + (self.p_enc_2d(mask_embeddings))
# print("mask embeddings with positional embeddings shape: ", mask_embeddings_with_pos_embed.shape)
#average pool to 100 tokens
b, c, h, w = mask_embeddings_with_pos_embed.shape
mask_embeddings_with_pos_embed_avgpooled = torch.nn.functional.adaptive_avg_pool2d(mask_embeddings_with_pos_embed, (10,10))
# print("mask embeddings with pos embed shape: ", mask_embeddings_with_pos_embed_avgpooled.shape)
mask_embeddings = mask_embeddings_with_pos_embed_avgpooled.permute(0,2,3,1).reshape((b,100,c))
# print("mask embeddings shape: ", mask_embeddings.shape)
mask_embeddings = mask_embeddings.to(self.device)
else:
mask_embeddings = None
# # draw output image
# plt.figure(figsize=(10, 10))
# plt.imshow(image)
# for mask in masks:
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
# for box, label in zip(boxes_filt, pred_phrases):
# show_box(box.numpy(), plt.gca(), label)
# # plt.title('RAM-tags' + tags + '\n' + 'RAM-tags_chineseing: ' + tags_chinese + '\n')
# plt.axis('off')
# plt.savefig(
# "automatic_label_output.jpg",
# bbox_inches="tight", dpi=300, pad_inches=0.0
# )
# return natural_im, thermal_im, text_ins, text_embeddings, box_embeddings, mask_embeddings
return {
"visible_image": natural_im,
"thermal_image": thermal_im,
"edit_instruction": text_ins,
"text_embed": text_embeddings,
"box_embed": box_embeddings,
"mask_embed": mask_embeddings,
"masks": masks
}
if __name__ == "__main__":
# data_path = '/mnt/store/jparanj1/Thermal_Datasets/M3FD_Fusion/splits/split_1/train'
data_path = '/mnt/store/jparanj1/Thermal_Datasets/OSU CT/train'
d = ThermalDataset(data_path, return_boxes=True,
return_masks=True,
return_text=True,)
d0 = d[0]
print("Length of dataset: ", len(d))