-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObjectify_old.py
256 lines (192 loc) · 8.54 KB
/
Objectify_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import flopy
from joblib import Parallel, delayed
from pykrige.ok import OrdinaryKriging
class Ensemble:
def __init__(self, X, Ysim, obscell, PPcor, htable, hvartable, tstp, meanh, varh, meank, Ens_PP, ncores):
self.ncores = ncores
self.X = X
self.nreal = X.shape[1]
self.nX = X.shape[0]
self.Ysim = Ysim
self.obscell= obscell
self.PPcor = PPcor
self.htable = htable
self.hvartab= hvartable
self.tstp = tstp
self.meanh = meanh
self.varh = varh
self.meank = meank
self.Ens_PP = Ens_PP
self.nPP = Ens_PP.shape[0] #CHECK whetehr this is true
self.members = []
def update_tstp(self):
self.tstp += 1
# Add Member to Ensemble
def add_member(self, member):
self.members.append(member)
def remove_member(self, member, j):
self.members.remove(member)
np.delete(self.X, j, axis = 1)
np.delete(self.Ysim, j, axis = 1)
np.delete(self.Ens_PP, j, axis = 1)
self.nreal -= 1
def initial_conditions(self, Rch, Qpu):
# Only works with the preset member class
result = Parallel(
n_jobs=self.ncores)(delayed(member.predict)(
Rch, Qpu, self.tstp) for member in self.members
)
j = 0
while j < self.nreal:
if np.any(result[j]) == None:
self.remove_member(self.members[j], j)
print("Another ensemble member untimely laid down its work")
else:
self.members[j].set_hfield(np.squeeze(result[j]))
j = j + 1
# Propagate Entire Ensemble
def predict(self, Rch, Qpu):
# Only works with the preset member class
result = Parallel(
n_jobs=self.ncores)(delayed(member.predict)(
Rch, Qpu, self.tstp) for member in self.members
)
j = 0
while j < self.nreal:
if np.any(result[j]) == None:
self.remove_member(self.members[j], j)
print("Another ensemble member untimely laid down its work")
else:
# htable refers to the mean head level in the ensemble
#self.htable[j,:,:] = np.squeeze(result[j])
self.X[self.nPP:,j] = np.ndarray.flatten(result[j])
j += 1
def update_hmean(self):
newmean = np.zeros(self.meanh.shape)
for member in self.members:
newmean += member.hfield
self.meanh = newmean / self.nreal
self.htable[self.tstp,:] = self.meanh
def update_kmean(self):
newmean = np.zeros(self.members[0].kfield.shape)
for member in self.members:
newmean += member.kfield
self.meank[10402:21058] = newmean / self.nreal
def update_hvar(self):
self.varh = np.reshape(np.var(self.X[self.nPP:],axis = 1),self.meanh.shape)
self.hvartab[self.tstp-1,:] = self.varh
def update_PP(self, PPk):
for j in range(self.nreal):
self.X[0:self.nPP, j] = PPk[:,j]
def analysis(self, Obs_t, eps):
self.Ysim = np.zeros((len(Obs_t),self.nreal))
for j in range(self.nreal):
for k in range(len(Obs_t)):
self.Ysim[k,j] = self.members[j].hfield[int(Obs_t[k,0])]
# self.Ysim[k,j] = self.htable[j,self.obsloc[k][0],self.obsloc[k][1]]
# Compute mean of postX and Y_sim
Xmean = np.tile(np.array(np.mean(self.X, axis = 1)).T, (self.nreal, 1)).T
Ymean = np.tile(np.array(np.mean(self.Ysim, axis = 1)).T, (self.nreal, 1)).T
# Fluctuations around mean
X_prime = self.X - Xmean
Y_prime = self.Ysim - Ymean
# Variance inflation
# priorX = X_prime * 1.01 + Xmean
# Measurement uncertainty matrix
R = np.identity(len(Obs_t)) * eps
# Covariance matrix
Cyy = 1/(self.nreal-1)*np.matmul((Y_prime),(Y_prime).T) + R
return X_prime, Y_prime, Cyy
def Kalman_update(self, damp, X_prime, Y_prime, Cyy, Y_obs):
self.X += 1/(self.nreal-1) * (damp *
np.matmul(
X_prime, np.matmul(
Y_prime.T, np.matmul(
np.linalg.inv(Cyy), (Y_obs[:,1].reshape((len(self.Ysim),1)) - self.Ysim)
)
)
).T
).T
for j in range(len(self.members)):
self.members[j].set_hfield(np.reshape(self.X[self.nPP:,j],self.members[j].hfield.shape))
self.update_hmean()
self.update_hvar()
def updateK(self, cellx, celly, ang, lx, cov_mod):
Parallel(n_jobs=self.ncores)(delayed(self.members[j].updateK)(
[cellx,celly,[self.PPcor,self.X[0:self.nPP,j]],ang,lx,cov_mod]) for j in range(len(self.members))
)
self.update_kmean()
class Member:
def __init__(self, direc, kfield, hfield, mname, idx_ge):
self.direc = direc
self.hdirec = direc + "/flow_output/flow.hds"
self.kfield = kfield
self.hfield = hfield
self.mname = mname
self.greateq = idx_ge
# This takes comparably long
self.sim = flopy.mf6.modflow.MFSimulation.load(
mname,
version = 'mf6',
exe_name = 'mf6',
sim_ws = direc,
verbosity_level = 0
)
def get_hfield(self):
return self.hfield
def get_kfield(self):
return self.kfield
def set_kfield(self, Kf):
assert Kf.shape == self.kfield.shape, "Why you change size of field?"
self.kfield = Kf
# Update Package
mdl = self.sim.get_model(self.mname)
npf = mdl.get_package("npf")
k = npf.k.get_data()
# Change K alues for second layer
k[10402:21058] = np.exp(Kf)
k[self.greateq] = 86400
npf.k.set_data(k)
def set_hfield(self, Hf):
assert Hf.shape == self.hfield.shape, "Why you change size of field?"
self.hfield = Hf
# Update Package
mdl = self.sim.get_model(self.mname)
ic = mdl.get_package("ic")
ic.data_list[0].set_data(Hf)
def predict(self, Rch, Qpu, tstp):
mdl = self.sim.get_model(self.mname)
rch = mdl.get_package("rch")
rchspd = rch.stress_period_data.get_data()
rchspd[0]['recharge'] = Rch
rch.stress_period_data.set_data(rchspd)
wel = mdl.get_package("wel")
wspd = wel.stress_period_data.get_data()
# for entry in wspd:
# if "brunnen " in entry['boundname']:
# wspd['q'][wspd['boundname'].index(value)] = Qpu[0]
for entry in Qpu.keys():
if entry in wspd[0]['boundname']:
wspd[0]['q'][np.where(wspd[0]['boundname'] == entry)[0][0]] = -Qpu[entry][tstp]
wel.stress_period_data.set_data(wspd)
success, buff = self.sim.run_simulation()
if not success:
print(f"Model in {self.direc} has failed")
Hf = None
else:
Hf = flopy.utils.binaryfile.HeadFile(self.hdirec).get_data(kstpkper=(0, 0))
# self.set_hfield(self, Hf)
return Hf
def updateK(self, pack,porg = "points", pert = False):
x,y,data,ang,lx,cov_mod = pack
xyk = data[0]
k = data[1]
if pert == True:
k_pert = np.random.normal(k,0.1*k)
ok1 = OrdinaryKriging(xyk[:,0], xyk[:,1], k_pert, cov_mod)
z1,_ = ok1.execute(porg, x, y)
else:
ok1 = OrdinaryKriging(xyk[:,0], xyk[:,1], k, cov_mod)
z1,_ = ok1.execute(porg, x, y)
self.set_kfield(z1)