-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObjectify.py
350 lines (269 loc) · 13.6 KB
/
Objectify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import numpy as np
import flopy
from joblib import Parallel, delayed
# from gstools import krige, Matern
import matplotlib.pyplot as plt
from pykrige.ok import OrdinaryKriging
class Ensemble:
def __init__(self, X, Ysim, obsloc, PPcor, tstp, meanh, meank, ncores):
self.ncores = ncores
self.X = X
self.nreal = X.shape[1]
self.Ysim = Ysim
self.nobs = Ysim.shape[0] #CHECK whetehr this is true
self.obsloc = obsloc
self.PPcor = PPcor
self.nPP = len(PPcor)
self.tstp = tstp
self.meanh = meanh
self.meank = meank
self.members = []
def update_tstp(self):
self.tstp += 1
# Add Member to Ensemble
def add_member(self, member):
self.members.append(member)
def remove_member(self, member, j):
self.members.remove(member)
np.delete(self.X, j, axis = 1)
np.delete(self.Ysim, j, axis = 1)
self.nreal -= 1
def set_transient_forcing(self, Rch, Qpu):
# Set transient forcings and create appropriate dictionaries
rch = self.members[0].model.get_package("rch")
rchspd = rch.stress_period_data.get_data()
rchspd[0]['recharge'] = Rch
wel = self.members[0].model.get_package("wel")
wspd = wel.stress_period_data.get_data()
for entry in Qpu.keys():
if entry in wspd[0]['boundname']:
# This is not the correct way of accessing a dictionary
wspd[0]['q'][np.where(wspd[0]['boundname'] == entry)[0][0]] = -Qpu[entry][self.tstp]
for member in self.members:
member.model.rch.stress_period_data.set_data(rchspd)
member.model.wel.stress_period_data.set_data(wspd)
def initial_conditions(self):
# Only works with the preset member class
result = Parallel(
n_jobs=self.ncores)(delayed(member.predict)(
) for member in self.members
)
# self.ncores
j = 0
while j < self.nreal:
if np.any(result[j]) == None:
self.remove_member(self.members[j], j)
print("Another ensemble member untimely laid down its work")
else:
# UPDATE INITIAL CONDITIONS
self.members[j].set_hfield(np.squeeze(result[j]))
j = j + 1
# Propagate Entire Ensemble
def predict(self):
result = Parallel(
n_jobs=self.ncores)(delayed(member.predict)(
) for member in self.members
)
j = 0
while j < self.nreal:
if np.any(result[j]) == None:
self.remove_member(self.members[j], j)
print("Another ensemble member untimely laid down its work")
else:
self.X[self.nPP:,j] = np.ndarray.flatten(result[j])
# THESE VALUES SHOULD BE DIFFERENT --> CHECK Kfield maybe?
# k = 0
# for key in self.obsloc.keys():
# self.Ysim[k,j] = self.X[self.nPP+int(self.obsloc[key]), j]
# k +=1
# self.Ysim[k,j] = self.members[j].model.output.head().get_data()[0,self.obsloc[k][0],self.obsloc[k][1]]
j += 1
def updateObservations(self,Obs_t):
Ysim = np.zeros((len(Obs_t),self.nreal))
for i in range(self.nreal):
for k in range(len(Obs_t)):
Ysim[k,i] = self.X[self.nPP+int(Obs_t[k,0]), i]
self.Ysim = Ysim
def update_hmean(self):
newmean = np.zeros(self.members[0].model.output.head().get_data().shape)
for member in self.members:
newmean += member.model.ic.strt.array
self.meanh = newmean / self.nreal
def update_kmean(self):
newmean = np.zeros(self.members[0].model.npf.k.array.shape)
for member in self.members:
newmean += member.model.npf.k.array
self.meank = newmean / self.nreal
def get_varh(self):
return np.reshape(np.var(self.X[self.nPP:], axis = 1), self.members[0].model.npf.k.array.shape)
def update_PP(self, PPk):
for j in range(self.nreal):
self.X[0:self.nPP, j] = PPk[:,j]
def analysis(self, eps):
# Compute mean of postX and Y_sim
Xmean = np.tile(np.array(np.mean(np.ma.masked_values(self.X, 1e+30), axis = 1)).T, (self.nreal, 1)).T
Ymean = np.tile(np.array(np.mean(self.Ysim, axis = 1)).T, (self.nreal, 1)).T
# Fluctuations around mean
X_prime = np.ma.masked_values(self.X, 1e+30) - Xmean
Y_prime = self.Ysim - Ymean
# Variance inflation
# priorX = X_prime * 1.01 + Xmean
# Measurement uncertainty matrix
R = np.identity(self.nobs) * eps
# Covariance matrix
Cyy = 1/(self.nreal-1)*np.matmul((Y_prime),(Y_prime).T) + R
return X_prime, Y_prime, Cyy
def Kalman_update(self, damp, X_prime, Y_prime, Cyy, Obs_t):
Y_obs = np.tile(Obs_t[:,1],(self.nreal,1)).transpose()
self.X += 1/(self.nreal-1) * (damp *
np.matmul(
np.ma.getdata(X_prime), np.matmul(
Y_prime.T, np.matmul(
np.linalg.inv(Cyy), (Y_obs - self.Ysim) #This line seems to be the problem
)
)
).T
).T
for j in range(len(self.members)):
self.members[j].set_hfield(np.reshape(self.X[self.nPP:,j],self.members[j].model.ic.strt.array.shape))
self.update_hmean()
def updateK(self, pack):
x,y,xyk,k,cov_mod = pack
Parallel(n_jobs=self.ncores)(delayed(self.members[j].updateK)(
[x,y,xyk,self.X[0:self.nPP,j],cov_mod]) for j in range(len(self.members))
)
self.update_kmean()
def get_obs(self):
obs = [self.meanh[0, self.obsloc[i][0], self.obsloc[i][1]] for i in range(len(self.obsloc))]
return obs
def ole(self, interim, Ole_mat, sigma, Errorcounter):
active_obs = interim.drop(['Date'], axis = 1)[interim.drop(['Date'], axis =1) > 0].count().sum()
obs = np.zeros((1,active_obs))
obs_sim = np.zeros((1,active_obs))
# Observation location error, n_nodes up until that timestep, unscaled NRMSE up until that point
counter = 0
for key in self.obsloc.keys():
if interim[key][interim[key].index[0]] > 0:
obs[0,counter] = interim[key][interim[key].index[0]]
obs_sim[0,counter] = self.meanh[0,0,int(self.obsloc[key])]
counter += 1
if Errorcounter == 0:
uNMRSE = np.sum(np.sum((obs - obs_sim)**2 / sigma))
n_node = active_obs
ole = np.sqrt(1/n_node * uNMRSE)
else:
uNMRSE = np.sum(np.sum((obs - obs_sim)**2 / sigma)) + Ole_mat[Errorcounter-1, 2]
n_node = active_obs + Ole_mat[Errorcounter-1, 1]
ole = np.sqrt(1/n_node * uNMRSE)
return np.array([ole, n_node, uNMRSE])
def compare(self):
result = Parallel(n_jobs=self.ncores)(delayed(self.members[j].get_spdis)
() for j in range(len(self.members))
)
qx_l = [result[i][0] for i in range(len(result))]
qy_l = [result[i][1] for i in range(len(result))]
qz_l = [result[i][2] for i in range(len(result))]
qx = np.squeeze(np.mean(qx_l, axis=0))
qy = np.squeeze(np.mean(qy_l, axis=0))
qz = np.squeeze(np.mean(qz_l, axis = 0))
mask = self.meanh > 1e+10
vmin = self.meanh[self.meanh > -0.1].min()
vmax = self.meanh[self.meanh < 500].max()
k_field = self.meank
k_field = np.log10(np.array(k_field)/86400)
k_field[np.squeeze(mask)] = 1e+30
vmink = k_field.min()
vmaxk = k_field[k_field < 86400].max()
fig1, axes1 = plt.subplots(1, 1, figsize=(25, 25), sharex=True, dpi = 400)
ax11 = axes1
ax11.set_title("Ensemble-mean K-field in period " + str(int(self.tstp)), fontsize = 30)
pmv = flopy.plot.PlotMapView(self.members[0].model, layer=0, ax=ax11)
ax11.set_aspect("equal")
# mapable = pmv.plot_array(k_field.flatten(), cmap="RdBu", vmin=vmink, vmax=vmaxk)
mapable = pmv.plot_array(self.members[0].model.npf.k.array, cmap="RdBu", vmin=vmink, vmax=vmaxk)
# im_ratio = k_field.shape[1]/k_field.shape[2]
cbar = plt.colorbar(mapable, pad=0.04, ax =ax11)
# cbar = plt.colorbar(mapable, fraction=im_ratio*0.046, pad=0.04, ax =ax11)
cbar.ax.set_ylabel('Hydraulic Conductivity [m/s]', fontsize = 25)
cbar.ax.tick_params(labelsize=20)
ax11.yaxis.label.set_size(25)
ax11.xaxis.label.set_size(25)
plt.ylabel('Northing [m]', fontsize = 25)
ax11.tick_params(axis='both', which='major', labelsize=20)
pmv.plot_grid(colors="k", alpha=0.1)
pmv.plot_bc('riv')
pmv.plot_vector(qx, qy, width=0.0008, color="black")
plt.savefig("K_field in t" + str(self.tstp), format="svg")
fig2, axes2 = plt.subplots(1, 1, figsize=(25, 25), sharex=True, dpi = 400)
ax21 = axes2
ax21.set_title("Ensemble-mean h-field in period " + str(int(self.tstp)), fontsize = 30)
pmv = flopy.plot.PlotMapView(self.members[0].model, layer=0, ax=ax21)
ax21.set_aspect("equal")
pmv.contour_array(
self.meanh, masked_values = 1e+30, levels=np.arange(vmin, vmax, 0.1), linewidths=2.0, vmin=vmin, vmax=vmax
)
mapable = pmv.plot_array(self.meanh, cmap="RdBu", vmin=vmin, vmax=vmax)
cbar = plt.colorbar(mapable, pad=0.04, ax =ax21)
cbar.ax.set_ylabel('Hydraulic Head [m]', fontsize = 25)
cbar.ax.tick_params(labelsize=20)
ax21.yaxis.label.set_size(25)
ax21.xaxis.label.set_size(25)
plt.ylabel('Northing [m]', fontsize = 25)
ax21.tick_params(axis='both', which='major', labelsize=20)
pmv.plot_grid(colors="k", alpha=0.1)
pmv.plot_bc('riv')
plt.savefig("Heads in t" + str(self.tstp), format="svg")
class Member:
def __init__(self, direc, Kf, idx_ge):
self.direc = direc
self.hdirec = direc + "/flow_output/flow.hds"
self.sim = flopy.mf6.modflow.MFSimulation.load(
version = 'mf6',
exe_name = 'mf6',
sim_ws = direc,
verbosity_level = 0
)
self.model = self.sim.get_model()
self.greateq = idx_ge
self.set_kfield(Kf)
def get_hfield(self):
return self.model.output.head().get_data()
def get_kfield(self):
return self.model.npf.k.array
def set_kfield(self, Kf):
k = self.model.npf.k.get_data()
# Change K alues for second layer
k[10402:21058] = Kf
k[self.greateq] = 86400
self.model.npf.k.set_data(k)
def set_hfield(self, Hf):
self.model.ic.strt.set_data(Hf)
def predict(self):
success, buff = self.sim.run_simulation()
if not success:
print(f"Model in {self.direc} has failed")
Hf = None
else:
Hf = self.model.output.head().get_data()
return Hf
def updateK(self, pack, porg = "points"):
x,y,xyk,k,cov_mod = pack
ok1 = OrdinaryKriging(xyk[:,0], xyk[:,1], k, cov_mod)
z1,_ = ok1.execute(porg, x, y)
self.set_kfield(np.exp(z1))
def get_spdis(self):
head = self.model.output.head().get_data()
bud = self.model.output.budget()
spdis = bud.get_data(text="DATA-SPDIS")[0]
# maybe we should flatten everything?? so that entire array is not processeed but its values
qx = np.zeros(np.shape(head))
qy = np.zeros(np.shape(head))
qz = np.zeros(np.shape(head))
counter = 0
for i in range(self.model.modelgrid.nnodes):
if head[0][0][i] < 1e+30:
qx[0][0][i] = spdis["qx"][counter]
qy[0][0][i] = spdis["qy"][counter]
qz[0][0][i] = spdis["qz"][counter]
counter += 1
return qx, qy, qz