-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutil.py
106 lines (77 loc) · 3.52 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from argparse import Namespace
from typing import Tuple
import numpy as np
import torch
import torchvision
import torchvision.transforms.functional as transforms
from PIL import Image
from torch import Tensor
from torch.nn.functional import interpolate
def load_styles(style_files, size, scale, oversize=False, device="cpu", memory_format=torch.contiguous_format):
styles = []
for style_file in style_files:
styles.append(load_image(style_file, size, scale, not oversize, device=device, memory_format=memory_format))
return styles
def maybe_load_content(content_file, size, device="cpu", memory_format=torch.contiguous_format):
content = None
if content_file is not None:
content = load_image(content_file, size, oversize=False, device=device, memory_format=memory_format)
return content
def load_image(path, size, scale=1, oversize=True, device="cpu", memory_format=torch.contiguous_format):
img = Image.open(path).convert(mode="RGB")
img = img.resize(get_size(size, scale, img.size[0], img.size[1], oversize), Image.ANTIALIAS)
return transforms.to_tensor(img).unsqueeze(0).to(device, memory_format=memory_format)
def get_size(size: int, scale: float, h: int, w: int, oversize: bool = False):
ssize = size * scale
wpercent = ssize / float(h)
hsize = int((float(w) * float(wpercent)))
if oversize:
size = min(int(ssize), h)
hsize = min(hsize, w)
return round32(size), round32(hsize)
def save_image(output: Tensor, args: Namespace):
outs = [name(style) for style in args.style]
if len(args.style) > 1:
outs += ["blend" + str(args.mixing_alpha)]
if args.content is not None:
outs += [name(args.content), "strength" + str(args.content_strength)]
outs += [args.hist_mode + "hist"]
if args.no_pca:
outs += ["no_pca"]
if args.no_multires:
outs += ["no_multires"]
if args.style_scale != 1:
outs += ["scale" + str(args.style_scale)]
if args.color_transfer is not None:
outs += [args.color_transfer]
outs += [str(args.size)]
outname = "_".join(outs)
for o, out in enumerate(output):
torchvision.utils.save_image(
out, f"{args.output_dir}/{outname}" + (f"_{o + 1}" if len(output) > 1 else "") + ".png"
)
def get_iters_and_sizes(size: int, iters: int, passes: int, use_multires: bool):
# more iterations for smaller sizes and deeper layers
if use_multires:
iters_per_pass = np.arange(2 * passes, passes, -1)
iters_per_pass = iters_per_pass / np.sum(iters_per_pass) * iters
sizes = np.linspace(256, size, passes)
# round to nearest multiple of 32, so that even after 4 max pools the resolution is an even number
sizes = (32 * np.round(sizes / 32)).astype(np.int32)
else:
iters_per_pass = np.ones(passes) * int(iters / passes)
sizes = [size] * passes
proportion_per_layer = np.array([64, 128, 256, 512, 512]) + 64
proportion_per_layer = proportion_per_layer / np.sum(proportion_per_layer)
iters = (iters_per_pass[:, None] * proportion_per_layer[None, :]).astype(np.int32)
return iters.tolist(), sizes.tolist()
def name(filepath: str):
return filepath.split("/")[-1].split(".")[0]
def round32(integer: int):
return int(integer + 32 - 1) & -32
def to_nchw(x: Tensor):
return x.permute(0, 3, 1, 2)
def to_nhwc(x: Tensor):
return x.permute(0, 2, 3, 1)
def resize(x: Tensor, size: Tuple[int, int]):
return interpolate(x, size=size, mode="bicubic", align_corners=False, antialias=True)