-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransformer.c
296 lines (216 loc) · 11.7 KB
/
transformer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#include "tensor.h"
// transformer = TransformerLayer(shape=16, att_qkv_in=16, att_qkv_out=48, scale=2 * np.sqrt(2))
//
// 16 48
// self.attention = MultiHeadAttention(qkv_in_features=att_qkv_in, qkv_out_features=att_qkv_out, scale=scale)
// self.QKV = torch.nn.Linear(in_features=qkv_in_features, out_features=qkv_out_features)
// self.out_proj = torch.nn.Linear(in_features=qkv_in_features, out_features=qkv_in_features)
// TODO(irwin):
// - [x] batch input support via internal wrapper loop
// - [ ] proper batch input support
static void dual_head_attention(MemoryArena *arena, TestTensor *input_batch,
TestTensor *QKV_weights, TestTensor *QKV_biases,
TestTensor *proj_weights, TestTensor *proj_biases,
TestTensor *output_batch )
{
TracyCZone(dual_head_attention, true);
Assert( input_batch->ndim == 2 || input_batch->ndim == 3 );
Assert( output_batch->ndim == input_batch->ndim );
Assert( QKV_weights->ndim == 2 );
Assert( QKV_biases->ndim == 1 );
int in_features = tdim( QKV_weights, -1 );
const int n_heads = 2;
int head_length = in_features / n_heads;
int out_features = tdim( QKV_weights, -2 );
int seq_length = tdim( input_batch, -2 );
Assert( in_features == tdim( input_batch, -1 ) );
Assert( out_features == tdim( QKV_biases, 0 ) );
Assert( proj_weights->ndim == 2 );
Assert( proj_biases->ndim == 1 );
Assert( tdim( proj_weights, 0 ) == in_features );
Assert( tdim( proj_weights, 1 ) == in_features );
Assert( tdim( proj_biases, 0 ) == in_features );
Assert( tdim( output_batch, -2 ) == seq_length );
Assert( tdim( output_batch, -1 ) == in_features );
TemporaryMemory mark = beginTemporaryMemory( arena );
if (input_batch->ndim == 2)
{
input_batch = tensor_unsqueeze_pointer(arena, input_batch, 0);
output_batch = tensor_unsqueeze_pointer(arena, output_batch, 0);
}
int batch_size = tdim(input_batch, -3);
for ( int batch_index = 0; batch_index < batch_size; ++batch_index )
{
TestTensor input_slice = tensor_index_first_dim( input_batch, batch_index, false );
TestTensor output_slice = tensor_index_first_dim( output_batch, batch_index, false );
// TODO(irwin): avoid taking an address of a stack variable
TestTensor *input = &input_slice;
TestTensor *output = &output_slice;
TemporaryMemory mark_batch = beginTemporaryMemory( arena );
TestTensor *QKV_result = tensor_zeros_2d( arena, seq_length, out_features );
tensor_linear( input, QKV_weights, QKV_biases, QKV_result );
TestTensor *QKV_result_T = tensor_transpose_last_2d( arena, QKV_result );
int head_size = seq_length * head_length;
TestTensor head_ref = {.ndim = 2, .dims = {head_length, seq_length}};
head_ref.size = head_size;
head_ref.nbytes = head_size * sizeof( float );
head_ref.data = QKV_result_T->data;
TestTensor *q1 = tensor_transpose_last_2d( arena, &head_ref );
head_ref.data += head_size;
TestTensor *q2 = tensor_transpose_last_2d( arena, &head_ref );
head_ref.data += head_size;
TestTensor *k1 = tensor_transpose_last_2d( arena, &head_ref );
head_ref.data += head_size;
TestTensor *k2 = tensor_transpose_last_2d( arena, &head_ref );
head_ref.data += head_size;
TestTensor *v1 = tensor_copy( arena, &head_ref );
head_ref.data += head_size;
TestTensor *v2 = tensor_copy( arena, &head_ref );
TestTensor *a1 = tensor_zeros_2d( arena, tdim( k1, -2 ), tdim( q1, -2 ) );
TestTensor *a2 = tensor_zeros_like( arena, a1 );
tensor_linear( k1, q1, 0, a1 );
tensor_linear( k2, q2, 0, a2 );
// NOTE(irwin): 1.0f / sqrtf(head_length);
// where head_length is the dimensionality of the head
// (this is the sqrt(dk) in the paper Attention Is All You Need
// https://arxiv.org/pdf/1706.03762.pdf)
// NOTE(irwin): this is done for numerical stability
const float scale = 1.0f / sqrtf((float)head_length);
tensor_mul_inplace( a1, scale );
tensor_mul_inplace( a2, scale );
softmax_inplace_stable( arena, a1 );
softmax_inplace_stable( arena, a2 );
// [25, 25] x [8, 25] = [25, 8]
TestTensor *attn1 = tensor_zeros_2d( arena, tdim( a1, -2 ), tdim( v1, -2 ) );
TestTensor *attn2 = tensor_zeros_like( arena, attn1 );
// [25, 8]
// [25, 8]
tensor_linear( a1, v1, 0, attn1 );
tensor_linear( a2, v2, 0, attn2 );
// [8, 25]
// [8, 25]
TestTensor *attn1_t = tensor_transpose_last_2d( arena, attn1 );
TestTensor *attn2_t = tensor_transpose_last_2d( arena, attn2 );
// [16, 25]
// TODO(irwin): tensor_concat routine
TestTensor *attn12_t = tensor_zeros_2d( arena, tdim( attn1_t, -2 ) * 2, tdim( attn1_t, -1 ) );
memmove( attn12_t->data, attn1_t->data, attn1_t->nbytes );
memmove( attn12_t->data + attn1_t->size, attn2_t->data, attn2_t->nbytes );
// [25, 16]
TestTensor *attention = tensor_transpose_last_2d( arena, attn12_t );
// [25, 16] x [16, 16] + [16] = [25, 16]
tensor_linear( attention, proj_weights, proj_biases, output );
endTemporaryMemory( mark_batch );
}
endTemporaryMemory( mark );
TracyCZoneEnd(dual_head_attention);
}
// TODO(irwin):
// - [x] batch input support via wrapper
// - [x] batch input support via internal wrapper loop
// - [x] proper batch input support
static void transformer_block( MemoryArena *arena, TestTensor *input_batch,
TestTensor *attention_weights, TestTensor *attention_biases,
TestTensor *attention_proj_weights, TestTensor *attention_proj_biases,
TestTensor *norm1_weights, TestTensor *norm1_biases,
TestTensor *linear1_weights, TestTensor *linear1_biases,
TestTensor *linear2_weights, TestTensor *linear2_biases,
TestTensor *norm2_weights, TestTensor *norm2_biases,
TestTensor *output_batch )
{
TracyCZone(transformer_block, true);
Assert( input_batch->ndim == 2 || input_batch->ndim == 3 );
Assert( output_batch->ndim == input_batch->ndim );
TemporaryMemory mark = beginTemporaryMemory( arena );
if (input_batch->ndim == 2)
{
input_batch = tensor_unsqueeze_pointer(arena, input_batch, 0);
output_batch = tensor_unsqueeze_pointer(arena, output_batch, 0);
}
int batch_size = tdim(input_batch, -3);
TestTensor *input = input_batch;
TestTensor *output = output_batch;
{
///////////////////////////////////////////////////////////////////////////////////
// NOTE(irwin): BEGIN transformer_block logic before batch conversion
///////////////////////////////////////////////////////////////////////////////////
int shape = tdim( input, -2 );
TemporaryMemory mark_batch = beginTemporaryMemory( arena );
TestTensor *input_transposed = tensor_transpose_last_2d( arena, input );
TestTensor *attention_output = tensor_zeros_like( arena, input_transposed );
dual_head_attention( arena, input_transposed,
attention_weights, attention_biases,
attention_proj_weights, attention_proj_biases,
attention_output );
tensor_add_inplace_nd( input_transposed, attention_output );
// TODO(irwin): can zero and reuse attention_output?
TestTensor *norm1_output = tensor_zeros_like( arena, input_transposed );
layer_norm_batch( arena, input_transposed, norm1_weights, norm1_biases, norm1_output );
// NOTE(irwin): tdim(input_transposed, -1) == tdim(input, -2)
// NOTE(irwin): tdim(norm1_output, -1) == tdim(input_transposed, -1)
// NOTE(irwin): shape is tdim(input, -2)
Assert(tdim( norm1_output, -1 ) == shape);
TestTensor *linear1_output = tensor_zeros_3d( arena, batch_size, tdim( norm1_output, -2 ), shape );
tensor_linear( norm1_output, linear1_weights, linear1_biases, linear1_output );
tensor_relu_inplace( linear1_output );
TestTensor *linear2_output = tensor_zeros_3d( arena, batch_size, tdim( linear1_output, -2 ), shape );
tensor_linear( linear1_output, linear2_weights, linear2_biases, linear2_output );
tensor_add_inplace_nd( norm1_output, linear2_output );
TestTensor *norm2_output = tensor_zeros_like( arena, norm1_output );
layer_norm_batch( arena, norm1_output, norm2_weights, norm2_biases, norm2_output );
TestTensor *output_copy_source = tensor_transpose_last_2d( arena, norm2_output );
Assert(output->nbytes == output_copy_source->nbytes);
memmove( output->data, output_copy_source->data, output->nbytes );
///////////////////////////////////////////////////////////////////////////////////
// NOTE(irwin): END transformer_block logic before batch conversion
///////////////////////////////////////////////////////////////////////////////////
endTemporaryMemory( mark_batch );
}
endTemporaryMemory( mark );
TracyCZoneEnd(transformer_block);
}
static void transformer_layer( MemoryArena *arena, TestTensor *input, TransformerLayer_Weights weights, int conv_stride, TestTensor *output )
{
TracyCZone(transformer_layer, true);
TemporaryMemory mark = beginTemporaryMemory( arena );
ConvOutputShape conv_block_out_shape = conv_block_output_shape( input, weights.dw_conv_weights, weights.pw_conv_weights );
{
ConvOutputShape output_required_shape = conv_output_shape_shape( conv_block_out_shape, weights.conv_weights, conv_stride );
// TODO(irwin): verify
Assert( output_required_shape.batch_size == tdim( output, 0 ) );
Assert( output_required_shape.channels_out == tdim( output, 1 ) );
Assert( output_required_shape.sequence_length == tdim( output, 2 ) );
}
TestTensor* conv_block_output = tensor_zeros_3d( arena, conv_block_out_shape.batch_size, conv_block_out_shape.channels_out, conv_block_out_shape.sequence_length );
b32 conv_block_has_proj = (weights.proj_weights != 0 && weights.proj_biases != 0);
// NOTE(irwin): 1 - ConvBlock
conv_block( arena, input, conv_block_has_proj,
weights.dw_conv_weights, weights.dw_conv_biases,
weights.pw_conv_weights, weights.pw_conv_biases,
weights.proj_weights, weights.proj_biases,
conv_block_output );
TestTensor *transformer_block_output = tensor_zeros_like( arena, conv_block_output );
// NOTE(irwin): 2 - TransformerBlock
transformer_block(arena,
conv_block_output,
weights.attention_weights, weights.attention_biases,
weights.attention_proj_weights, weights.attention_proj_biases,
weights.norm1_weights, weights.norm1_biases,
weights.linear1_weights, weights.linear1_biases,
weights.linear2_weights, weights.linear2_biases,
weights.norm2_weights, weights.norm2_biases,
transformer_block_output);
// NOTE(irwin): 3 - Conv1d
int hop_length = conv_stride;
TestTensor *conv_output = conv_tensor_out ( arena, transformer_block_output, weights.conv_weights, weights.conv_biases, hop_length );
batch_norm1d( conv_output,
weights.batch_norm_running_mean,
weights.batch_norm_running_var,
weights.batch_norm_weights,
weights.batch_norm_biases,
output );
// NOTE(irwin): 4 - ReLU
tensor_relu_inplace( output );
endTemporaryMemory( mark );
TracyCZoneEnd(transformer_layer);
}