-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathavuc_loss.py
443 lines (379 loc) · 17.8 KB
/
avuc_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright (C) 2024 Intel Corporation
#
# BSD-3-Clause License
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
# OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
# OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# AvULoss -> compute accuracy versus uncertainty calibration loss
# AUAvULoss -> compute accuracy versus uncertainty calibration loss
# without uncertainty threshold
# accuracy_versus_uncertainty -> compute AvU metric
# eval_AvU -> get AvU scores at differemt uncertainty thresholds
# predictive_entropy -> compute predictive uncertainty of the model
# mutual_information -> compute model uncertainty of the model
#
# @authors: Ranganath Krishnan
#
# ===============================================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch.nn.functional as F
import torch
from torch import nn
import numpy as np
from sklearn.metrics import auc
class AvULoss(nn.Module):
"""
Calculates Accuracy vs Uncertainty Loss of a model.
The input to this loss is logits from Monte_carlo sampling of the model, true labels,
and the type of uncertainty to be used [0: predictive uncertainty (default);
1: model uncertainty]
Reference:
[1]: Ranganath Krishnan, Omesh Tickoo. Improving model calibration with
accuracy versus uncertainty optimization. Advances in Neural Information
Processing Systems 33 (NeurIPS) 2020.
https://arxiv.org/abs/2012.07923
"""
def __init__(self, beta=1):
super(AvULoss, self).__init__()
self.beta = beta
self.eps = 1e-10
def entropy(self, prob):
return -1 * torch.sum(prob * torch.log(prob + self.eps), dim=-1)
def expected_entropy(self, mc_preds):
return torch.mean(self.entropy(mc_preds), dim=0)
def predictive_uncertainty(self, mc_preds):
"""
Compute the entropy of the mean of the predictive distribution
obtained from Monte Carlo sampling.
"""
return self.entropy(torch.mean(mc_preds, dim=0))
def model_uncertainty(self, mc_preds):
"""
Compute the difference between the entropy of the mean of the
predictive distribution and the mean of the entropy.
"""
return self.entropy(torch.mean(
mc_preds, dim=0)) - self.expected_entropy(mc_preds)
def accuracy_vs_uncertainty(self, prediction, true_label, uncertainty,
optimal_threshold):
# number of samples accurate and certain
n_ac = torch.zeros(1, device=true_label.device)
# number of samples inaccurate and certain
n_ic = torch.zeros(1, device=true_label.device)
# number of samples accurate and uncertain
n_au = torch.zeros(1, device=true_label.device)
# number of samples inaccurate and uncertain
n_iu = torch.zeros(1, device=true_label.device)
avu = torch.ones(1, device=true_label.device)
avu.requires_grad_(True)
for i in range(len(true_label)):
if ((true_label[i].item() == prediction[i].item())
and uncertainty[i].item() <= optimal_threshold):
""" accurate and certain """
n_ac += 1
elif ((true_label[i].item() == prediction[i].item())
and uncertainty[i].item() > optimal_threshold):
""" accurate and uncertain """
n_au += 1
elif ((true_label[i].item() != prediction[i].item())
and uncertainty[i].item() <= optimal_threshold):
""" inaccurate and certain """
n_ic += 1
elif ((true_label[i].item() != prediction[i].item())
and uncertainty[i].item() > optimal_threshold):
""" inaccurate and uncertain """
n_iu += 1
print('n_ac: ', n_ac, ' ; n_au: ', n_au, ' ; n_ic: ', n_ic, ' ;n_iu: ',
n_iu)
avu = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu)
return avu
def forward(self, logits, labels, optimal_uncertainty_threshold, type=0):
probs = F.softmax(logits, dim=1)
confidences, predictions = torch.max(probs, 1)
if type == 0:
unc = self.entropy(probs)
else:
unc = self.model_uncertainty(probs)
unc_th = torch.tensor(optimal_uncertainty_threshold,
device=logits.device)
n_ac = torch.zeros(
1, device=logits.device) # number of samples accurate and certain
n_ic = torch.zeros(
1,
device=logits.device) # number of samples inaccurate and certain
n_au = torch.zeros(
1,
device=logits.device) # number of samples accurate and uncertain
n_iu = torch.zeros(
1,
device=logits.device) # number of samples inaccurate and uncertain
avu = torch.ones(1, device=logits.device)
avu_loss = torch.zeros(1, device=logits.device)
for i in range(len(labels)):
if ((labels[i].item() == predictions[i].item())
and unc[i].item() <= unc_th.item()):
""" accurate and certain """
n_ac += confidences[i] * (1 - torch.tanh(unc[i]))
elif ((labels[i].item() == predictions[i].item())
and unc[i].item() > unc_th.item()):
""" accurate and uncertain """
n_au += confidences[i] * torch.tanh(unc[i])
elif ((labels[i].item() != predictions[i].item())
and unc[i].item() <= unc_th.item()):
""" inaccurate and certain """
n_ic += (1 - confidences[i]) * (1 - torch.tanh(unc[i]))
elif ((labels[i].item() != predictions[i].item())
and unc[i].item() > unc_th.item()):
""" inaccurate and uncertain """
n_iu += (1 - confidences[i]) * torch.tanh(unc[i])
avu = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu + self.eps)
#print('AvU metric: ', self.accuracy_vs_uncertainty(predictions, labels, uncertainty, optimal_threshold))
avu_loss = -1 * self.beta * torch.log(avu + self.eps)
return avu_loss
class AUAvULoss(nn.Module):
"""
Calculates Accuracy vs Uncertainty Loss of a model without the need for optimal
uncertainty threshold, but compute intensive.
The input to this loss is logits from Monte_carlo sampling of the model, true labels,
and the type of uncertainty to be used [0: predictive uncertainty (default);
1: model uncertainty]
Reference:
[1]: Ranganath Krishnan, Omesh Tickoo. Improving model calibration with
accuracy versus uncertainty optimization. Advances in Neural Information
Processing Systems 33 (NeurIPS) 2020.
https://arxiv.org/abs/2012.07923
"""
def __init__(self, beta=1):
super(AUAvULoss, self).__init__()
self.beta = beta
self.eps = 1e-10
def entropy(self, prob):
return -1 * torch.sum(prob * torch.log(prob + self.eps), dim=-1)
def expected_entropy(self, mc_preds):
return torch.mean(self.entropy(mc_preds), dim=0)
def predictive_uncertainty(self, mc_preds):
"""
Compute the entropy of the mean of the predictive distribution
obtained from Monte Carlo sampling.
"""
return self.entropy(torch.mean(mc_preds, dim=0))
def model_uncertainty(self, mc_preds):
"""
Compute the difference between the entropy of the mean of the
predictive distribution and the mean of the entropy.
"""
return self.entropy(torch.mean(
mc_preds, dim=0)) - self.expected_entropy(mc_preds)
def auc_avu(self, logits, labels, unc):
""" returns AvU at various uncertainty thresholds"""
th_list = np.linspace(0, 1, 21)
umin = torch.min(unc)
umax = torch.max(unc)
avu_list = []
unc_list = []
probs = F.softmax(logits, dim=1)
confidences, predictions = torch.max(probs, 1)
auc_avu = torch.ones(1, device=labels.device)
auc_avu.requires_grad_(True)
for t in th_list:
unc_th = umin + (torch.tensor(t) * (umax - umin))
n_ac = torch.zeros(
1,
device=labels.device) # number of samples accurate and certain
n_ic = torch.zeros(1, device=labels.device
) # number of samples inaccurate and certain
n_au = torch.zeros(1, device=labels.device
) # number of samples accurate and uncertain
n_iu = torch.zeros(1, device=labels.device
) # number of samples inaccurate and uncertain
for i in range(len(labels)):
if ((labels[i].item() == predictions[i].item())
and unc[i].item() <= unc_th.item()):
""" accurate and certain """
n_ac += confidences[i] * (1 - torch.tanh(unc[i]))
elif ((labels[i].item() == predictions[i].item())
and unc[i].item() > unc_th.item()):
""" accurate and uncertain """
n_au += confidences[i] * torch.tanh(unc[i])
elif ((labels[i].item() != predictions[i].item())
and unc[i].item() <= unc_th.item()):
""" inaccurate and certain """
n_ic += (1 - confidences[i]) * (1 - torch.tanh(unc[i]))
elif ((labels[i].item() != predictions[i].item())
and unc[i].item() > unc_th.item()):
""" inaccurate and uncertain """
n_iu += (1 - confidences[i]) * torch.tanh(unc[i])
AvU = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu + 1e-10)
avu_list.append(AvU.data.cpu().numpy())
unc_list.append(unc_th)
auc_avu = auc(th_list, avu_list)
return auc_avu
def accuracy_vs_uncertainty(self, prediction, true_label, uncertainty,
optimal_threshold):
n_ac = torch.zeros(
1,
device=true_label.device) # number of samples accurate and certain
n_ic = torch.zeros(1, device=true_label.device
) # number of samples inaccurate and certain
n_au = torch.zeros(1, device=true_label.device
) # number of samples accurate and uncertain
n_iu = torch.zeros(1, device=true_label.device
) # number of samples inaccurate and uncertain
avu = torch.ones(1, device=true_label.device)
avu.requires_grad_(True)
for i in range(len(true_label)):
if ((true_label[i].item() == prediction[i].item())
and uncertainty[i].item() <= optimal_threshold):
""" accurate and certain """
n_ac += 1
elif ((true_label[i].item() == prediction[i].item())
and uncertainty[i].item() > optimal_threshold):
""" accurate and uncertain """
n_au += 1
elif ((true_label[i].item() != prediction[i].item())
and uncertainty[i].item() <= optimal_threshold):
""" inaccurate and certain """
n_ic += 1
elif ((true_label[i].item() != prediction[i].item())
and uncertainty[i].item() > optimal_threshold):
""" inaccurate and uncertain """
n_iu += 1
print('n_ac: ', n_ac, ' ; n_au: ', n_au, ' ; n_ic: ', n_ic, ' ;n_iu: ',
n_iu)
avu = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu)
return avu
def forward(self, logits, labels, type=0):
probs = F.softmax(logits, dim=1)
confidences, predictions = torch.max(probs, 1)
if type == 0:
unc = self.entropy(probs)
else:
unc = self.model_uncertainty(probs)
th_list = np.linspace(0, 1, 21)
umin = torch.min(unc)
umax = torch.max(unc)
avu_list = []
unc_list = []
auc_avu = torch.ones(1, device=labels.device)
auc_avu.requires_grad_(True)
for t in th_list:
unc_th = umin + (torch.tensor(t, device=labels.device) *
(umax - umin))
n_ac = torch.zeros(
1,
device=labels.device) # number of samples accurate and certain
n_ic = torch.zeros(1, device=labels.device
) # number of samples inaccurate and certain
n_au = torch.zeros(1, device=labels.device
) # number of samples accurate and uncertain
n_iu = torch.zeros(1, device=labels.device
) # number of samples inaccurate and uncertain
for i in range(len(labels)):
if ((labels[i].item() == predictions[i].item())
and unc[i].item() <= unc_th.item()):
""" accurate and certain """
n_ac += confidences[i] * (1 - torch.tanh(unc[i]))
elif ((labels[i].item() == predictions[i].item())
and unc[i].item() > unc_th.item()):
""" accurate and uncertain """
n_au += confidences[i] * torch.tanh(unc[i])
elif ((labels[i].item() != predictions[i].item())
and unc[i].item() <= unc_th.item()):
""" inaccurate and certain """
n_ic += (1 - confidences[i]) * (1 - torch.tanh(unc[i]))
elif ((labels[i].item() != predictions[i].item())
and unc[i].item() > unc_th.item()):
""" inaccurate and uncertain """
n_iu += (1 - confidences[i]) * torch.tanh(unc[i])
AvU = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu + self.eps)
avu_list.append(AvU)
unc_list.append(unc_th)
auc_avu = auc(th_list, avu_list)
avu_loss = -1 * self.beta * torch.log(auc_avu + self.eps)
return avu_loss, auc_avu
def entropy(prob):
return -1 * np.sum(prob * np.log(prob + 1e-15), axis=-1)
def predictive_entropy(mc_preds):
"""
Compute the entropy of the mean of the predictive distribution
obtained from Monte Carlo sampling during prediction phase.
"""
return entropy(np.mean(mc_preds, axis=0))
def mutual_information(mc_preds):
"""
Compute the difference between the entropy of the mean of the
predictive distribution and the mean of the entropy.
"""
MI = entropy(np.mean(mc_preds, axis=0)) - np.mean(entropy(mc_preds),
axis=0)
return MI
def eval_avu(pred_label, true_label, uncertainty):
""" returns AvU at various uncertainty thresholds"""
t_list = np.linspace(0, 1, 21)
umin = np.amin(uncertainty, axis=0)
umax = np.amax(uncertainty, axis=0)
avu_list = []
unc_list = []
for t in t_list:
u_th = umin + (t * (umax - umin))
n_ac = 0
n_ic = 0
n_au = 0
n_iu = 0
for i in range(len(true_label)):
if ((true_label[i] == pred_label[i]) and uncertainty[i] <= u_th):
n_ac += 1
elif ((true_label[i] == pred_label[i]) and uncertainty[i] > u_th):
n_au += 1
elif ((true_label[i] != pred_label[i]) and uncertainty[i] <= u_th):
n_ic += 1
elif ((true_label[i] != pred_label[i]) and uncertainty[i] > u_th):
n_iu += 1
AvU = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu + 1e-15)
avu_list.append(AvU)
unc_list.append(u_th)
return np.asarray(avu_list), np.asarray(unc_list)
def accuracy_vs_uncertainty(pred_label, true_label, uncertainty,
optimal_threshold):
n_ac = 0
n_ic = 0
n_au = 0
n_iu = 0
for i in range(len(true_label)):
if ((true_label[i] == pred_label[i])
and uncertainty[i] <= optimal_threshold):
n_ac += 1
elif ((true_label[i] == pred_label[i])
and uncertainty[i] > optimal_threshold):
n_au += 1
elif ((true_label[i] != pred_label[i])
and uncertainty[i] <= optimal_threshold):
n_ic += 1
elif ((true_label[i] != pred_label[i])
and uncertainty[i] > optimal_threshold):
n_iu += 1
AvU = (n_ac + n_iu) / (n_ac + n_au + n_ic + n_iu)
return AvU