-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtemplate.py
85 lines (66 loc) · 2.08 KB
/
template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def includes():
out = " \
#include <torch/all.h>\n \
#include <torch/python.h>\n \
#include <omp.h>\n \
#include <cmath>\n \
#include <immintrin.h>\n \
\n \
#define mymin(a,b) ((a)<(b)?(a):(b))\n \
#define mymax(a,b) ((a)>(b)?(a):(b))\n \
"
return out
def module(bits_list=[4, 2]):
out = 'PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {\n'
for bits in bits_list:
out += ' m.def("forward{}", &forward{}_cpu);\n'.format(bits, bits)
for bits in bits_list:
out += ' m.def("unpack_zeros{}", &unpack_zeros{});\n'.format(bits, bits)
for bits in bits_list:
out += ' m.def("forward_gs{}", &forward{}_gs_cpu);\n'.format(bits, bits)
for bits in bits_list:
out += ' m.def("pack{}", &pack{}_w_cpu);\n'.format(bits, bits)
out += 'm.def("compute_reduction_cpp", &compute_reduction);\n'
out += 'm.def("unquantize_sim", &unquantize_sim);\n'
# if oracle:
# out += ' m.def("forward4_oracle", &forward4_oracle_cpu);\n'
out += 'm.def("quant_scalar_scaled", &quant_scalar_cpu);\n'
out += '}\n'
return out
def quant_scalar():
out = " \
void quantize_scalar(float* A, int* BQ, float* scales, float* zeros, int n, int m, int bits){ \n \
//find scales and zeros arrays \n \
//quantize \n \
int pack = 32/bits;\n \
for (int j = 0; j < m; j++){\n \
for (int i = 0; i < n; i+=pack){\n \
uint32_t acc = 0;\n \
for (int ii = i; ii < i+pack; ii++){\n \
float ftemp = std::round((A[ii*m+j] + zeros[j])/scales[j]);\n \
int temp = (int)ftemp;\n \
acc = acc | (temp << (bits*(ii-i)));\n \
}\n \
BQ[(i/pack)*m+j] = acc;\n \
//BQ[0] = acc;\n \
}\n \
}\n \
}\n \
\n \
void quant_scalar_cpu(\n \
torch::Tensor in, torch::Tensor out, \n \
torch::Tensor scales, torch::Tensor zeros, int bits\n \
) {\n \
\n \
int N = in.size(0);\n \
int M = in.size(1);\n \
\n \
float* input = in.data_ptr<float>(); \n \
float* s = scales.data_ptr<float>();\n \
float* z = zeros.data_ptr<float>();\n \
int* O = out.data_ptr<int>();\n \
\n \
quantize_scalar(input, O, s, z, N, M, bits);\n \
\n \
}\n"
return out