-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
33 lines (30 loc) · 1.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import json
import re
import string
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, TensorDataset, DataLoader, RandomSampler, SequentialSampler
from my_datasets import ZSREData, ZESTData, ZSREGroupedData, ZESTGroupedData, ZSREWithDescriptionData, ZSREWithDescriptionGroupedData, SQuADData, SQuADGroupedData, SQuADWithDescriptionGroupedData
def MyDatasetCollection(logger, args, data_path, is_training):
if args.dataset == 'zsre':
return ZSREData(logger, args, data_path, is_training)
elif args.dataset == 'zsre_grouped':
return ZSREGroupedData(logger, args, data_path, is_training)
elif args.dataset == 'zest':
return ZESTData(logger, args, data_path, is_training)
elif args.dataset == 'zest_grouped':
return ZESTGroupedData(logger, args, data_path, is_training)
elif args.dataset == 'zsre_with_description':
return ZSREWithDescriptionData(logger, args, data_path, is_training)
elif args.dataset == 'zsre_with_description_grouped':
return ZSREWithDescriptionGroupedData(logger, args, data_path, is_training)
elif args.dataset == 'squad':
return SQuADData(logger, args, data_path, is_training)
elif args.dataset == 'squad_grouped':
return SQuADGroupedData(logger, args, data_path, is_training)
elif args.dataset == 'squad_with_description_grouped':
return SQuADWithDescriptionGroupedData(logger, args, data_path, is_training)
else:
raise NotImplementedError