-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
45 lines (40 loc) · 1.94 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from nasa.utils import pdist
import numpy as np
class NASA_loss(nn.Module):
def __init__(self, t= 3,alpha=10):
super().__init__()
self.margin=t
self.scale=alpha
def forward(self, embeddings,embeddings_strc):
dist_mat_ori = pdist(embeddings).view(-1)
mean = dist_mat_ori.mean().detach()
std = dist_mat_ori.std().detach()
self.eta = torch.tensor([mean, torch.max(0.2*mean,mean-self.margin*std)])
mm,nn=embeddings.shape[0],embeddings.shape[1]
adapt_dist_mat = torch.zeros([mm,mm ])
for i in range(0, embeddings.shape[0]):
dis = (embeddings[i] - embeddings).pow(2).clamp(min=1e-12)
tmp = torch.mul(embeddings_strc[i].expand(mm, nn),dis)
adapt_dist_mat[i] = torch.sqrt(torch.sum(tmp,1))
dis_mat_noanchor = adapt_dist_mat[~torch.eye(adapt_dist_mat.shape[0], dtype=torch.bool, device=adapt_dist_mat.device,)]
pos_group=(dis_mat_noanchor[None].cuda() - self.eta[:, None].cuda()).abs()[0]
neg_group=(dis_mat_noanchor[None].cuda() - self.eta[:, None].cuda()).abs()[1]
c=torch.exp(-self.scale*pos_group)/(torch.exp(-self.scale*pos_group)+torch.exp(-self.scale*neg_group))
self_ranking_loss = (c*pos_group+(1-c)*neg_group).mean()
return self_ranking_loss
class Triplet(nn.Module):
def __init__(self, margin=0.2, sampler=None, reduce=True, size_average=True):
super().__init__()
self.margin = margin
self.sampler = sampler
self.sampler.dist_func = lambda e: pdist(e, squared=(p == 2))
self.reduce = reduce
self.size_average = size_average
def forward(self, x, y):
a_id, p_id, n_id = self.sampler(x, y)
loss_metric = F.triplet_margin_loss(x[a_id],x[p_id],x[n_id],margin=self.margin,reduction="none")
return loss_metric.mean()