-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
177 lines (151 loc) · 6.72 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import argparse
import random
import torch
import torch.optim as optim
import torch.nn.functional as F
from utils import dataset
import network.backbone as backbone
import nasa.loss as loss
import nasa.utils as utils
from tqdm import tqdm
from torch.utils.data import DataLoader
from network.twin_heads import Twin_Embeddings
from utils.eval import *
def nasa_train(model, loader, optimizer, criterion, reg_criterion,lambda_1, args,ep=0):
model.train()
fix_batchnorm(model)
train_iter = tqdm(loader, ncols=80)
loss_all = []
for images, labels in train_iter:
images, labels = images.cuda(), labels.cuda()
embedding,embedding_strc = model(images)
loss_metric = criterion(embedding, labels)
loss_strc = lambda_1* reg_criterion(embedding,embedding_strc)
optimizer.zero_grad()
(loss_metric + loss_strc).backward()
optimizer.step()
train_iter.set_description("epoch %d: loss_metric: %.5f loss_strc: %.5f"% (ep, loss_metric.item(), loss_strc.item()))
def nasa_eval(model, loader, K=[1], ep=0):
model.eval()
test_iter = tqdm(loader, ncols=80)
embeddings_all, embeddings_all_strc,labels_all = [],[], []
with torch.no_grad():
for images, labels in test_iter:
images, labels = images.cuda(), labels.cuda()
embedding, embedding_strc = model(images)
embeddings_all.append(embedding.data)
embeddings_all_strc.append(embedding_strc.data)
labels_all.append(labels.data)
embeddings_all = torch.cat(embeddings_all)
embeddings_all_strc = torch.cat(embeddings_all_strc)
labels_all = torch.cat(labels_all)
rec,rec_strc = recall_strc(embeddings_all,embeddings_all_strc, labels_all, K=K)
for k,r_w,r in zip(K,rec_strc,rec):
print("epoch %d: NASA+ R@%d: [%.4f] NASA R@%d: [%.4f]\n" % (ep, k,r_w,k,r))
return rec[0], K, rec, rec_strc[0],rec_strc
if __name__ == "__main__":
parser = argparse.ArgumentParser()
LookupChoices = type("",(argparse.Action,),dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))
parser.add_argument("--mode", choices=["train", "eval"], default="train")
parser.add_argument("--dataset",choices=dict(cars=dataset.Cars196Metric,), default=dataset.Cars196Metric, action=LookupChoices,)
parser.add_argument("--backbone",default=backbone.BNInception,)
parser.add_argument("--lambda_1", type=float, default=2.0)
parser.add_argument("--dim", type=int, default=512)
parser.add_argument("--lr", default=5e-5, type=float)
parser.add_argument("--lr-decay-epochs", type=int, default=[40, 60, 80], nargs="+")
parser.add_argument("--lr-decay-gamma", default=0.2, type=float)
parser.add_argument("--batch", default=128, type=int)
parser.add_argument("--IPC", default=4, type=int)
parser.add_argument("--iter-per-epoch", default=100, type=int)
parser.add_argument("--epochs", default=90, type=int)
parser.add_argument("--recall", default=[1, 2, 4, 8, 32], type=int, nargs="+")
parser.add_argument("--scale", default=10, type=int)
parser.add_argument("--margin", default=3, type=int)
parser.add_argument("--seed", default=random.randint(1, 1000), type=int)
parser.add_argument("--data", default="../MyDataset")
parser.add_argument("--save-dir", default="./log/result")
opts = parser.parse_args()
counter = 1
checkfolder = opts.save_dir
while os.path.exists(checkfolder):
checkfolder = opts.save_dir + '_' +str(opts.dataset.base_folder[0:3]) + '_'+str(opts.dim)+'_' + str(counter)
counter += 1
opts.save_dir = checkfolder
os.makedirs(opts.save_dir)
for set_random_seed in [random.seed, torch.manual_seed, torch.cuda.manual_seed_all]:
set_random_seed(opts.seed)
base_model = opts.backbone(pretrained=True)
model = Twin_Embeddings(base_model,feature_size=base_model.output_size,embedding_size=opts.dim,).cuda()
train_transform, test_transform = build_transform(base_model)
dataset_train = opts.dataset(
opts.data, train=True, transform=train_transform, download=True
)
dataset_train_eval = opts.dataset(
opts.data, train=True, transform=test_transform, download=True
)
dataset_eval = opts.dataset(
opts.data, train=False, transform=test_transform, download=True
)
print("Training images: %d" % len(dataset_train))
print("Test images: %d" % len(dataset_eval))
loader_train = DataLoader(
dataset_train,
batch_sampler=utils.PKSampler(
dataset_train, opts.batch, m=opts.IPC, iter_per_epoch=opts.iter_per_epoch
),
pin_memory=True,
num_workers=8,
)
loader_eval = DataLoader(
dataset_eval,
shuffle=False,
batch_size=64,
drop_last=False,
pin_memory=True,
num_workers=8,
)
criterion =loss.Triplet(sampler=utils.DistanceWeighted(), margin=0.2).cuda()
reg_criterion = loss.NASA_loss(t=opts.margin,alpha=opts.scale).cuda()
optimizer = optim.Adam(
[
{"lr": opts.lr, "params": model.parameters()},
{"lr": opts.lr, "params": criterion.parameters()},
{"lr": opts.lr, "params": reg_criterion.parameters()},
],
weight_decay=1e-5,
)
lr_scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=opts.lr_decay_epochs, gamma=opts.lr_decay_gamma
)
best_rec=0.0
best_rec_strc=0.0
for epoch in range(1, opts.epochs + 1):
nasa_train(
model,
loader_train,
optimizer,
criterion,
reg_criterion,
lambda_1=opts.lambda_1,
args=opts,
ep=epoch,
)
lr_scheduler.step()
_, _, _, nasa_r_strc,nasa_r_nasa_all = nasa_eval(model, loader_eval, opts.recall, epoch)
if best_rec_strc < nasa_r_strc:
best_rec_strc = nasa_r_strc
best_rec_all_strc=nasa_r_nasa_all
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
# torch.save(model.state_dict(), "%s/%s" % (opts.save_dir, "triplet.pth"))
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
with open("%s/result.txt" % opts.save_dir, "a+") as f:
f.write("Best nasa+ Recall_@1: %.4f\n" % best_rec_strc)
f.write("Best nasa+ Recall@2: %.4f\n" % best_rec_all_strc[1])
f.write("Best nasa+ Recall@4: %.4f\n" % best_rec_all_strc[2])
f.write("Best nasa+ Recall@8: %.4f\n" % best_rec_all_strc[3])
print("Best nasa+ Recall_@1: %.4f" % best_rec_strc)